ARC Centre of Excellence in Synthetic Biology, Australia.
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
Nucleic Acids Res. 2024 Jul 8;52(12):7367-7383. doi: 10.1093/nar/gkae460.
Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems. Boolean-type induction was achieved by implementing a second-layer control through low-temperature-mediated repression on GAL repressor gene GAL80, but suffered delayed response to low-temperature triggers and a weak response at 30°C. Application potentials were validated for protein and small molecule production. Proteomics analysis suggested that residual Gal80p and Gal4p insufficiency caused suboptimal induction. 'Turbo' mechanisms were engineered through incorporating a basal Gal4p expression and a galactose-independent Gal80p-supressing Gal3p mutant (Gal3Cp). Varying Gal3Cp configurations, we deployed the LowTempGAL systems capable for a rapid stringent high-level induction upon the shift from a high temperature (37-33°C) to a low temperature (≤30°C). Overall, we present a synthetic biology procedure that leverages 'leaky' biosensors to deploy highly responsive Boolean-type genetic circuits. The key lies in optimisation of the intricate layout of the multi-factor system. The LowTempGAL systems may be applicable in non-conventional yeast platforms for precision biomanufacturing.
温度是精确发酵中生物制品生物制造的重要控制因素。在这里,我们在模式酵母酿酒酵母中探索了一种高度响应的低温诱导遗传系统(LowTempGAL)。两种温度生物传感器,一种热诱导降解结构域和一种热诱导蛋白质聚集结构域,被用于调节 GAL 激活因子 Gal4p,使漏型 LowTempGAL 系统。通过低温介导对 GAL 阻遏基因 GAL80 的抑制来实现第二层控制,从而实现布尔型诱导,但对低温触发的响应延迟且在 30°C 时响应较弱。该系统的应用潜力在蛋白质和小分子生产方面得到了验证。蛋白质组学分析表明,残留的 Gal80p 和 Gal4p 不足导致诱导效果不佳。通过引入基础 Gal4p 表达和非半乳糖依赖的 Gal80p 抑制 Gal3p 突变体(Gal3Cp),构建了“涡轮”机制。通过改变 Gal3Cp 的构型,我们设计了 LowTempGAL 系统,使其能够在从高温(37-33°C)到低温(≤30°C)的转变时,快速严格地进行高水平诱导。总之,我们提出了一种利用“漏型”生物传感器部署高度响应布尔型遗传电路的合成生物学方法。关键在于优化多因素系统的复杂布局。LowTempGAL 系统可能适用于非传统酵母平台的精确生物制造。