van Heesch Thor, Sharma Sudhanshu, van Erp Bert, Ortíz Alberto Pérez de Alba, Dame Remus T, Vreede Jocelyne, Gavvala Krishna
Van 't Hoff Institute of Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
J Phys Chem B. 2025 Jun 12;129(23):5653-5663. doi: 10.1021/acs.jpcb.5c00189. Epub 2025 May 28.
DNA demonstrates remarkable structural diversity, transitioning between conformations such as B-DNA and A-DNA under specific environmental or protein-binding conditions. These transitions are relevant for mediating cellular processes such as gene regulation, DNA organization, and stress response. In bacteria, the histone-like nucleoid structuring protein (H-NS) exemplifies the interaction between sequence-dependent DNA conformational adaptability and protein-mediated regulatory mechanisms. Despite evidence for the strong affinity of H-NS for AT-rich DNA, the specific molecular and structural interactions driving this recognition remain largely unclear. Combining fluorescence spectroscopy, circular dichroism (CD), molecular dynamics (MD) simulations, and enhanced sampling techniques, we show that H-NS exhibits a 10-fold higher affinity for ApT repeats compared to that of GpC repeats. Interestingly, selective binding of H-NS to AT-rich DNA causes a structural adaptation in the DNA, including increased bending flexibility, minor groove widening, and localized A-like DNA features, while GC-rich DNA remains closer to the canonical B-form. Our approach yielded detailed insights into how H-NS exploits the intrinsic conformational plasticity of DNA to achieve sequence-dependent binding. More broadly, this work illustrates how DNA-binding proteins can harness the structural adaptability of the DNA double helix, which may modulate regulatory outcomes, and provides insight into how the intrinsic properties of DNA shape protein-DNA interactions in diverse biological systems.
DNA表现出显著的结构多样性,在特定的环境或蛋白质结合条件下会在诸如B-DNA和A-DNA等构象之间转变。这些转变与介导细胞过程如基因调控、DNA组织和应激反应相关。在细菌中,类组蛋白核仁结构蛋白(H-NS)体现了序列依赖性DNA构象适应性与蛋白质介导的调控机制之间的相互作用。尽管有证据表明H-NS对富含AT的DNA具有很强的亲和力,但驱动这种识别的具体分子和结构相互作用在很大程度上仍不清楚。结合荧光光谱、圆二色性(CD)、分子动力学(MD)模拟和增强采样技术,我们表明与GpC重复序列相比,H-NS对ApT重复序列的亲和力高10倍。有趣的是,H-NS对富含AT的DNA的选择性结合会导致DNA的结构适应,包括弯曲灵活性增加、小沟变宽以及局部类似A-DNA的特征,而富含GC的DNA则更接近经典的B型。我们的方法对H-NS如何利用DNA的内在构象可塑性实现序列依赖性结合提供了详细的见解。更广泛地说,这项工作说明了DNA结合蛋白如何利用DNA双螺旋的结构适应性来调节调控结果,并深入了解DNA的内在特性如何塑造不同生物系统中的蛋白质-DNA相互作用。