Jensen J H, Chandra R
Department of Radiology, New York University School of Medicine, New York, New York, USA.
Magn Reson Med. 2000 Jul;44(1):144-56.
A theory is presented for describing the effect on the transverse NMR relaxation rate of microscopic spatial inhomogeneities in the static magnetic field. The theory applies when the inhomogeneities are weak in magnitude and the nuclear spins diffuse a significant distance in comparison with a length scale characterizing the inhomogeneities. It is shown that the relaxation rate is determined by a temporal correlation function and depends quadratically on the magnitude of the inhomogeneities. For the case of unrestricted diffusion, a simple algebraic approximation for the temporal correlation function is derived. The theory is illustrated by applying it to a model of randomly distributed magnetized spheres. The theory is also used to fit experimental data for the dependence of the relaxation rate on the interecho time for a Carr-Purcell-Meiboom-Gill pulse sequence. The experimental systems considered are in vitro red blood cell suspensions and samples of human gray matter and rat liver. Magn Reson Med 44:144-156, 2000.
提出了一种理论,用于描述静磁场中微观空间不均匀性对横向核磁共振弛豫率的影响。当不均匀性的幅度较弱且核自旋扩散的距离与表征不均匀性的长度尺度相比很大时,该理论适用。结果表明,弛豫率由一个时间相关函数决定,并且与不均匀性的幅度呈二次方关系。对于无限制扩散的情况,推导了时间相关函数的一个简单代数近似。通过将该理论应用于随机分布的磁化球体模型来说明这一理论。该理论还用于拟合Carr-Purcell-Meiboom-Gill脉冲序列的弛豫率对回波间隔时间依赖性的实验数据。所考虑的实验系统是体外红细胞悬液以及人类灰质和大鼠肝脏样本。《磁共振医学》44:144 - 156, 2000年。