Asensio J L, Cañada F J, Siebert H C, Laynez J, Poveda A, Nieto P M, Soedjanaamadja U M, Gabius H J, Jiménez-Barbero J
CSIC, Instituto de Química Orgánica General, Madrid, Spain.
Chem Biol. 2000 Jul;7(7):529-43. doi: 10.1016/s1074-5521(00)00136-8.
Many plants respond to pathogenic attack by producing defense proteins that are capable of reversible binding to chitin, a polysaccharide present in the cell wall of fungi and the exoskeleton of insects. Most of these chitin-binding proteins include a common structural motif of 30 to 43 residues organized around a conserved four-disulfide core, known as the 'hevein domain' or 'chitin-binding' motif. Although a number of structural and thermodynamic studies on hevein-type domains have been reported, these studies do not clarify how chitin recognition is achieved.
The specific interaction of hevein with several (GlcNAc)(n) oligomers has been studied using nuclear magnetic resonance (NMR), analytical ultracentrifugation and isothermal titration microcalorimetry (ITC). The data demonstrate that hevein binds (GlcNAc)(2-4) in 1:1 stoichiometry with millimolar affinity. In contrast, for (GlcNAc)(5), a significant increase in binding affinity is observed. Analytical ultracentrifugation studies on the hevein-(GlcNAc)(5,8) interaction allowed detection of protein-carbohydrate complexes with a ratio of 2:1 in solution. NMR structural studies on the hevein-(GlcNAc)(5) complex showed the existence of an extended binding site with at least five GlcNAc units directly involved in protein-sugar contacts.
The first detailed structural model for the hevein-chitin complex is presented on the basis of the analysis of NMR data. The resulting model, in combination with ITC and analytical ultracentrifugation data, conclusively shows that recognition of chitin by hevein domains is a dynamic process, which is not exclusively restricted to the binding of the nonreducing end of the polymer as previously thought. This allows chitin to bind with high affinity to a variable number of protein molecules, depending on the polysaccharide chain length. The biological process is multivalent.
许多植物通过产生防御蛋白来应对病原体攻击,这些防御蛋白能够与几丁质可逆结合,几丁质是一种存在于真菌细胞壁和昆虫外骨骼中的多糖。大多数这些几丁质结合蛋白包含一个由约30至43个残基组成的常见结构基序,围绕一个保守的四二硫键核心排列,称为“橡胶素结构域”或“几丁质结合”基序。尽管已经报道了一些关于橡胶素型结构域的结构和热力学研究,但这些研究并未阐明几丁质识别是如何实现的。
使用核磁共振(NMR)、分析超速离心和等温滴定量热法(ITC)研究了橡胶素与几种(GlcNAc)n寡聚物的特异性相互作用。数据表明,橡胶素以1:1的化学计量比与(GlcNAc)2-4结合,亲和力为毫摩尔级。相比之下,对于(GlcNAc)5,观察到结合亲和力显著增加。对橡胶素-(GlcNAc)5,8相互作用的分析超速离心研究允许检测溶液中蛋白质-碳水化合物复合物,其比例为2:1。对橡胶素-(GlcNAc)5复合物的NMR结构研究表明存在一个扩展的结合位点,至少有五个GlcNAc单元直接参与蛋白质-糖接触。
基于NMR数据分析,提出了橡胶素-几丁质复合物的第一个详细结构模型。所得模型与ITC和分析超速离心数据相结合,最终表明橡胶素结构域对几丁质的识别是一个动态过程,并不像以前认为的那样仅局限于聚合物非还原端的结合。这使得几丁质能够以高亲和力与可变数量的蛋白质分子结合,这取决于多糖链的长度。生物学过程是多价的。