Asensio J L, Canada F J, Bruix M, Rodriguez-Romero A, Jimenez-Barbero J
Instituto de Química Orgánica General, CSIC, Madrid, Spain.
Eur J Biochem. 1995 Jun 1;230(2):621-33. doi: 10.1111/j.1432-1033.1995.tb20604.x.
The three-dimensional structure of hevein, a small protein isolated from the latex of Hevea brasiliensis (rubber tree), in water solution has been obtained by using 1H-NMR spectroscopy and dynamic simulated annealing calculations. The average root-mean-square deviation (rmsd) of the best 20 refined structures generated using DIANA prior to simulated annealing was 0.092 nm for the backbone atoms and 0.163 nm for all heavy atoms (residues 3-41). The specific interaction of hevein with N-acetylglucosamine-containing oligosaccharides has also been analyzed by 1H-NMR. The association constants, Ka, for the binding of hevein to GlcNAc, chitobiose [GlcNAc-beta(1-->4)-GlcNAc], chitotriose [GlcNAc-beta(1-->4)-GlcNAc-beta(1-->4)-GlcNAc], and GlcNAc-alpha(1-->6)-Man have been estimated from 1H-NMR titration experiments. Since the measured Ka values for chitobiose binding are almost identical with and without calcium ions, it is shown that these cations are not required for sugar binding. The association increases in the order GlcNAc-alpha(1-->6)-Man < or = GlcNAc < chitobiose < chitotriose. The equilibrium thermodynamic parameters entropy and enthalpy of binding, delta S0 and delta H0, for the hevein-chitobiose and hevein-chitotriose associations have been obtained from van't Hoff analysis of the temperature dependence of the Ka values between 25-40 degrees C. The driving force for the binding process is provided for a negative delta H0 which is partially compensated by a negative delta S0. These negative signs seem to indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. Protein-carbohydrate nuclear Overhauser enhancements have allowed a three-dimensional model of the hevein-chitobiose complex to be built. From inspection of this model, a hydrogen bond between Ser19 and the non-reducing N-acetyl carbonyl group is suggested, as well as between Tyr30 and HO-3 of the same sugar residue. The N-acetyl methyl group of the non-reducing GlcNAc displays non-polar contacts to the aromatic Tyr30 and Trp21 residues. In addition, the higher affinities deduced for the beta-linked oligosaccharides with respect to GlcNAc and GlcNAc-alpha(1-->6)-Man can be explained by favourable stacking of the second beta-linked GlcNAc moiety and Trp21.
从巴西橡胶树(橡胶树)乳胶中分离出的一种小蛋白质——橡胶素,其在水溶液中的三维结构已通过使用1H-NMR光谱和动态模拟退火计算获得。在模拟退火之前,使用DIANA生成的最佳20个精制结构的平均均方根偏差(rmsd),主链原子为0.092纳米,所有重原子(残基3 - 41)为0.163纳米。橡胶素与含N - 乙酰葡糖胺的寡糖的特异性相互作用也已通过1H-NMR进行了分析。通过1H-NMR滴定实验估算了橡胶素与GlcNAc、壳二糖[GlcNAc-β(1→4)-GlcNAc]、壳三糖[GlcNAc-β(1→4)-GlcNAc-β(1→4)-GlcNAc]以及GlcNAc-α(1→6)-Man结合的缔合常数Ka。由于在有和没有钙离子的情况下测量的壳二糖结合的Ka值几乎相同,表明这些阳离子对于糖结合不是必需的。缔合度按GlcNAc-α(1→6)-Man≤GlcNAc<壳二糖<壳三糖的顺序增加。通过对25 - 40℃之间Ka值的温度依赖性进行范特霍夫分析,获得了橡胶素 - 壳二糖和橡胶素 - 壳三糖缔合的平衡热力学参数熵和结合焓ΔS0和ΔH0。结合过程的驱动力由负的ΔH0提供,它部分地由负的ΔS0补偿。这些负号似乎表明氢键和范德华力是稳定复合物的主要相互作用。蛋白质 - 碳水化合物核Overhauser增强效应使得能够构建橡胶素 - 壳二糖复合物的三维模型。通过检查该模型,推测Ser19与非还原端N - 乙酰羰基之间以及Tyr30与同一糖残基的HO - 3之间存在氢键。非还原端GlcNAc的N - 乙酰甲基与芳香族Tyr30和Trp21残基表现出非极性接触。此外,相对于GlcNAc和GlcNAc-α(1→6)-Man,推测β - 连接的寡糖具有更高的亲和力,可以通过第二个β - 连接的GlcNAc部分与Trp21的有利堆积来解释。