Suppr超能文献

细菌需氧呼吸链的冗余性?途径、原因及调控

Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation.

作者信息

Poole R K, Cook G M

机构信息

Krebs Institute for Biomolecular Research, University of Sheffield, UK.

出版信息

Adv Microb Physiol. 2000;43:165-224. doi: 10.1016/s0065-2911(00)43005-5.

Abstract

Bacteria are the most remarkable organisms in the biosphere, surviving and growing in environments that support no other life forms. Underlying this ability is a flexible metabolism controlled by a multitude of environmental sensors and regulators of gene expression. It is not surprising, therefore, that bacterial respiration is complex and highly adaptable: virtually all bacteria have multiple, branched pathways for electron transfer from numerous low-potential reductants to several terminal electron acceptors. Such pathways, particularly those involved in anaerobic respiration, may involve periplasmic components, but the respiratory apparatus is largely membrane-bound and organized such that electron flow is coupled to proton (or sodium ion) transport, generating a protonmotive force. It has long been supposed that the multiplicity of pathways serves to provide flexibility in the face of environmental stresses, but the existence of apparently redundant pathways for electrons to a single acceptor, say dioxygen, is harder to explain. Clues have come from studying the expression of oxidases in response to growth conditions, the phenotypes of mutants lacking one or more oxidases, and biochemical characterization of individual oxidases. Terminal oxidases that share the essential properties of substrate (cytochrome c or quinol) oxidation, dioxygen reduction and, in some cases, proton translocation, differ in subunit architecture and complement of redox centres. Perhaps more significantly, they differ in their affinities for oxidant and reductant, mode of regulation, and inhibitor sensitivity; these differences to some extent rationalize the presence of multiple oxidases. However, intriguing requirements for particular functions in certain physiological functions remain unexplained. For example, a large body of evidence demonstrates that cytochrome bd is essential for growth and survival under certain conditions. In this review, the physiological basis of the many phenotypes of Cyd-mutants is explored, particularly the requirement for this oxidase in diazotrophy, growth at low protonmotive force, survival in the stationary phase, and resistance to oxidative stress and Fe(III) chelators.

摘要

细菌是生物圈中最引人注目的生物体,能在没有其他生命形式生存的环境中存活和生长。这种能力的基础是由众多环境传感器和基因表达调节因子控制的灵活新陈代谢。因此,细菌呼吸复杂且高度适应并不奇怪:几乎所有细菌都有多种分支途径,可将众多低电位还原剂中的电子转移到几种终端电子受体。这些途径,尤其是那些参与厌氧呼吸的途径,可能涉及周质成分,但呼吸装置主要是膜结合的,其组织方式使电子流与质子(或钠离子)运输耦合,产生质子动力。长期以来,人们一直认为多种途径有助于在面对环境压力时提供灵活性,但对于电子流向单一受体(如氧气)的明显冗余途径的存在,却难以解释。线索来自于研究氧化酶在不同生长条件下的表达、缺乏一种或多种氧化酶的突变体的表型以及单个氧化酶的生化特性。终端氧化酶具有底物(细胞色素c或醌)氧化、氧气还原以及在某些情况下质子转运的基本特性,但在亚基结构和氧化还原中心组成上有所不同。也许更重要的是,它们在对氧化剂和还原剂的亲和力、调节模式以及抑制剂敏感性方面存在差异;这些差异在一定程度上解释了多种氧化酶存在的原因。然而,某些生理功能中特定功能的有趣需求仍无法解释。例如,大量证据表明细胞色素bd在某些条件下对生长和存活至关重要。在这篇综述中,我们探讨了Cyd突变体多种表型的生理基础,特别是这种氧化酶在固氮、低质子动力下生长、稳定期存活以及对氧化应激和铁(III)螯合剂抗性方面的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验