Brasseur G, Levican G, Bonnefoy V, Holmes D, Jedlicki E, Lemesle-Meunier D
Laboratoire de Bioénergétique et Ingénierie des Protéines, IBSM, CNRS, 31 Chemin J. Aiguier 13402 Marseille Cedex 20, France.
Biochim Biophys Acta. 2004 Jun 7;1656(2-3):114-26. doi: 10.1016/j.bbabio.2004.02.008.
Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic bacterium that can grow in the presence of either the weak reductant Fe(2+), or reducing sulfur compounds that provide more energy for growth than Fe(2+). We have previously shown that the uphill electron transfer pathway between Fe(2+) and NAD(+) involved a bc(1) complex that functions only in the reverse direction [J. Bacteriol. 182, (2000) 3602]. In the present work, we demonstrate both the existence of a bc(1) complex functioning in the forward direction, expressed when the cells are grown on sulfur, and the presence of two terminal oxidases, a bd and a ba(3) type oxidase expressed more in sulfur than in iron-grown cells, besides the cytochrome aa(3) that was found to be expressed only in iron-grown cells. Sulfur-grown cells exhibit a branching point for electron flow at the level of the quinol pool leading on the one hand to a bd type oxidase, and on the other hand to a bc(1)-->ba(3) pathway. We have also demonstrated the presence in the genome of transcriptionally active genes potentially encoding the subunits of a bo(3) type oxidase. A scheme for the electron transfer chains has been established that shows the existence of multiple respiratory routes to a single electron acceptor O(2). Possible reasons for these apparently redundant pathways are discussed.
嗜酸氧化亚铁硫杆菌是一种嗜酸化能自养细菌,它可以在弱还原剂Fe(2+)存在的情况下生长,或者在比Fe(2+)能为生长提供更多能量的还原态硫化合物存在的情况下生长。我们之前已经表明,Fe(2+)和NAD(+)之间的上坡电子传递途径涉及一种仅在反向起作用的bc(1)复合体[《细菌学杂志》182, (2000) 3602]。在本研究中,我们证明了存在一种在正向起作用的bc(1)复合体,当细胞在硫上生长时表达,并且除了发现仅在铁生长的细胞中表达的细胞色素aa(3)外,还存在两种末端氧化酶,一种bd型和一种ba(3)型氧化酶,在硫生长的细胞中比在铁生长的细胞中表达更多。硫生长的细胞在泛醌池水平上表现出电子流动的分支点,一方面通向bd型氧化酶,另一方面通向bc(1)-->ba(3)途径。我们还证明了在基因组中存在可能编码bo(3)型氧化酶亚基的转录活性基因。已经建立了一个电子传递链的示意图,显示了存在多条通向单一电子受体O(2)的呼吸途径。讨论了这些明显冗余途径的可能原因。