Suppr超能文献

大肠杆菌磷酸转移酶系统中葡萄糖特异性酶II(EII(Glc))组分的底物特异性和信号转导途径。

Substrate specificity and signal transduction pathways in the glucose-specific enzyme II (EII(Glc)) component of the Escherichia coli phosphotransferase system.

作者信息

Notley-McRobb L, Ferenci T

机构信息

Department of Microbiology, University of Sydney, Sydney, New South Wales 2006, Australia.

出版信息

J Bacteriol. 2000 Aug;182(16):4437-42. doi: 10.1128/JB.182.16.4437-4442.2000.

Abstract

Escherichia coli adapted to glucose-limited chemostats contained mutations in ptsG resulting in V12G, V12F, and G13C substitutions in glucose-specific enzyme II (EII(Glc)) and resulting in increased transport of glucose and methyl-alpha-glucoside. The mutations also resulted in faster growth on mannose and glucosamine in a PtsG-dependent manner. By use of enhanced growth on glucosamine for selection, four further sites were identified where substitutions caused broadened substrate specificity (G176D, A288V, G320S, and P384R). The altered amino acids include residues previously identified as changing the uptake of ribose, fructose, and mannitol. The mutations belonged to two classes. First, at two sites, changes affected transmembrane residues (A288V and G320S), probably altering sugar selectivity directly. More remarkably, the five other specificity mutations affected residues unlikely to be in transmembrane segments and were additionally associated with increased ptsG transcription in the absence of glucose. Increased expression of wild-type EII(Glc) was not by itself sufficient for growth with other sugars. A model is proposed in which the protein conformation determining sugar accessibility is linked to transcriptional signal transduction in EII(Glc). The conformation of EII(Glc) elicited by either glucose transport in the wild-type protein or permanently altered conformation in the second category of mutants results in altered signal transduction and interaction with a regulator, probably Mlc, controlling the transcription of pts genes.

摘要

适应葡萄糖限制恒化器的大肠杆菌在ptsG中发生突变,导致葡萄糖特异性酶II(EII(Glc))中的缬氨酸12突变为甘氨酸、苯丙氨酸,以及甘氨酸13突变为半胱氨酸,从而增加了葡萄糖和甲基-α-葡萄糖苷的转运。这些突变还导致以PtsG依赖的方式在甘露糖和氨基葡萄糖上生长更快。通过利用在氨基葡萄糖上的增强生长进行筛选,又鉴定出另外四个位点,在这些位点上的取代导致底物特异性变宽(甘氨酸176突变为天冬氨酸、丙氨酸288突变为缬氨酸、甘氨酸320突变为丝氨酸、脯氨酸384突变为精氨酸)。改变的氨基酸包括先前已确定会改变核糖、果糖和甘露醇摄取的残基。这些突变分为两类。首先,在两个位点,变化影响跨膜残基(丙氨酸288突变为缬氨酸和甘氨酸320突变为丝氨酸),可能直接改变糖的选择性。更值得注意的是,其他五个特异性突变影响不太可能位于跨膜区段的残基,并且在没有葡萄糖的情况下还与ptsG转录增加有关。野生型EII(Glc)的表达增加本身不足以支持利用其他糖类生长。提出了一个模型,其中决定糖可及性的蛋白质构象与EII(Glc)中的转录信号转导相关联。野生型蛋白质中由葡萄糖转运引发的EII(Glc)构象或第二类突变体中永久改变的构象导致信号转导改变以及与可能控制pts基因转录的调节因子(可能是Mlc)相互作用。

相似文献

引用本文的文献

2
SgrT, a Small Protein That Packs a Sweet Punch.SgrT,一种具有强大功能的小蛋白。
J Bacteriol. 2017 May 9;199(11). doi: 10.1128/JB.00130-17. Print 2017 Jun 1.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验