Suppr超能文献

大肠杆菌K-12的葡萄糖转运体突变体,其IICB(Glc)的底物识别和ptsG基因的诱导行为发生了变化。

Glucose transporter mutants of Escherichia coli K-12 with changes in substrate recognition of IICB(Glc) and induction behavior of the ptsG gene.

作者信息

Zeppenfeld T, Larisch C, Lengeler J W, Jahreis K

机构信息

Arbeitsgruppe Genetik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-49069 Osnabrück, Germany.

出版信息

J Bacteriol. 2000 Aug;182(16):4443-52. doi: 10.1128/JB.182.16.4443-4452.2000.

Abstract

In Escherichia coli K-12, the major glucose transporter with a central role in carbon catabolite repression and in inducer exclusion is the phosphoenolpyruvate-dependent glucose:phosphotransferase system (PTS). Its membrane-bound subunit, IICB(Glc), is encoded by the gene ptsG; its soluble domain, IIA(Glc), is encoded by crr, which is a member of the pts operon. The system is inducible by D-glucose and, to a lesser degree, by L-sorbose. The regulation of ptsG transcription was analyzed by testing the induction of IICB(Glc) transporter activity and of a single-copy Phi(ptsGop-lacZ) fusion. Among mutations found to affect directly ptsG expression were those altering the activity of adenylate cyclase (cyaA), the repressor DgsA (dgsA; also called Mlc), the general PTS proteins enzyme I (ptsI) and histidine carrier protein HPr (ptsH), and the IIA(Glc) and IIB(Glc) domains, as well as several authentic and newly isolated UmgC mutations. The latter, originally thought to map in the repressor gene umgC outside the ptsG locus, were found to represent ptsG alleles. These affected invariably the substrate specificity of the IICB(Glc) domain, thus allowing efficient transport and phosphorylation of substrates normally transported very poorly or not at all by this PTS. Simultaneously, all of these substrates became inducers for ptsG. From the analysis of the mutants, from cis-trans dominance tests, and from the identification of the amino acid residues mutated in the UmgC mutants, a new regulatory mechanism involved in ptsG induction is postulated. According to this model, the phosphorylation state of IIB(Glc) modulates IIC(Glc) which, directly or indirectly, controls the repressor DgsA and hence ptsG expression. By the same mechanism, glucose uptake and phosphorylation also control the expression of the pts operon and probably of all operons controlled by the repressor DgsA.

摘要

在大肠杆菌K-12中,磷酸烯醇丙酮酸依赖性葡萄糖:磷酸转移酶系统(PTS)是主要的葡萄糖转运体,在碳分解代谢物阻遏和诱导物排除中起核心作用。其膜结合亚基IICB(Glc)由ptsG基因编码;其可溶性结构域IIA(Glc)由crr编码,crr是pts操纵子的成员。该系统可被D-葡萄糖诱导,在较小程度上也可被L-山梨糖诱导。通过检测IICB(Glc)转运体活性的诱导以及单拷贝Phi(ptsGop-lacZ)融合体,对ptsG转录调控进行了分析。在发现直接影响ptsG表达的突变中,有改变腺苷酸环化酶(cyaA)活性的突变、阻遏物DgsA(dgsA;也称为Mlc)、通用PTS蛋白酶I(ptsI)和组氨酸载体蛋白HPr(ptsH)、IIA(Glc)和IIB(Glc)结构域的突变,以及几个真实的和新分离的UmgC突变。后者最初被认为定位于ptsG基因座外的阻遏基因umgC中,结果发现它们代表ptsG等位基因。这些突变总是影响IICB(Glc)结构域的底物特异性,从而使通常由该PTS转运很差或根本不转运的底物能够有效转运和磷酸化。同时,所有这些底物都成为ptsG的诱导物。通过对突变体的分析、顺反显性测试以及对UmgC突变体中突变氨基酸残基的鉴定,推测出一种参与ptsG诱导的新调控机制。根据该模型,IIB(Glc)的磷酸化状态调节IIC(Glc),IIC(Glc)直接或间接控制阻遏物DgsA,从而控制ptsG的表达。通过相同的机制,葡萄糖摄取和磷酸化也控制pts操纵子的表达,可能还控制由阻遏物DgsA控制的所有操纵子的表达。

相似文献

引用本文的文献

10
Transcriptional response of Escherichia coli to ammonia and glucose fluctuations.大肠杆菌对氨和葡萄糖波动的转录反应。
Microb Biotechnol. 2017 Jul;10(4):858-872. doi: 10.1111/1751-7915.12713. Epub 2017 Apr 26.

本文引用的文献

2
The initial kinetics of enzyme induction.酶诱导的初始动力学。
Biochim Biophys Acta. 1961 Apr 29;49:77-88. doi: 10.1016/0006-3002(61)90871-x.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验