Kaczorowski G, Shaw L, F-entes M, Walsh C
J Biol Chem. 1975 Apr 25;250(8):2855-65.
Isolated membrane vesicles from Escherichia coli B grown on DL-alanine-glycerol carry out amino acid active transport coupled to D-alanine oxidation by a membrane-bound dehydrogenase. Several other D-amino acids are substrates for this D-alanine dehydrogenase and also drive concentrative uptake of solutes. Additionally, L-alanine and L-serine can energize solute transport by virtue of conversion to oxidizable D isomers by a membrane-bound alanine racemase. No other physiological L-amino acids were effective. Both membrane enzymes and consequent solute transport are markedly reduced in vesicles from glucose-grown cells. Respiratory chain uncouplers abolish the racemase-dehydrogenase-supported transport activity. When amino-oxyacetate at 10-4 M is added to the vesicles, the racemase activity and transport driven by L-alanine and L-serine is specifically and reversibly inhibited. D-Alanine-driven transport is unaffected. Similarly beta-chloro-L-alanine is an irreversible inactivator of the bound racemase but not the D-alanine dehydrogenase. Both the D and L isomers of beta-chloroalanine support oxygen uptake by the vesicles and initially stimulate L-(14C)proline active transport. However, oxidation of the beta-chloro-D-alanine rapidly uncouples active transport from substrate oxidation. This transport inactivation can be protected partially by dithiothreitol, putatively scavenging a reactive product of chloroalanine oxidation. Authentic beta-chloropyruvate produces the same transport uncoupling. When beta-chloro-L-alanine is employed as a substrate, no such transport inactivation is observed. This difference may stem from the possibility that the alanine racemase eliminates HCl from beta-chloro-L-alanine producing pyruvate, not the beta-chloropyruvate that would arise from racemization and then dehydrogenation. We have shown that exogenous pyruvate is oxidized by the vesicles and will also stimulate active transport of amino acids.
在DL-丙氨酸-甘油培养基上生长的大肠杆菌B的分离膜囊泡,通过膜结合脱氢酶进行与D-丙氨酸氧化偶联的氨基酸主动运输。其他几种D-氨基酸是这种D-丙氨酸脱氢酶的底物,也能驱动溶质的浓缩摄取。此外,L-丙氨酸和L-丝氨酸可通过膜结合丙氨酸消旋酶转化为可氧化的D-异构体来为溶质运输提供能量。其他生理L-氨基酸均无效。葡萄糖生长细胞的膜囊泡中,这两种膜酶以及随之而来的溶质运输均显著减少。呼吸链解偶联剂可消除消旋酶-脱氢酶支持的运输活性。当向膜囊泡中加入10⁻⁴ M的氨基氧乙酸时,L-丙氨酸和L-丝氨酸驱动的消旋酶活性和运输会被特异性且可逆地抑制。D-丙氨酸驱动的运输不受影响。同样,β-氯-L-丙氨酸是结合型消旋酶的不可逆失活剂,但不是D-丙氨酸脱氢酶。β-氯丙氨酸的D-和L-异构体均支持膜囊泡摄取氧气,并最初刺激L-(¹⁴C)脯氨酸的主动运输。然而,β-氯-D-丙氨酸的氧化会迅速使主动运输与底物氧化解偶联。这种运输失活可被二硫苏糖醇部分保护,推测二硫苏糖醇可清除氯丙氨酸氧化的反应产物。纯β-氯丙酮酸也会产生相同的运输解偶联。当使用β-氯-L-丙氨酸作为底物时,未观察到这种运输失活。这种差异可能源于丙氨酸消旋酶从β-氯-L-丙氨酸中消除HCl生成丙酮酸的可能性,而不是消旋化然后脱氢产生的β-氯丙酮酸。我们已经表明,外源丙酮酸可被膜囊泡氧化,也会刺激氨基酸的主动运输。