Kaczorowski G, Shaw L, Laura R, Walsh C
J Biol Chem. 1975 Dec 10;250(23):8921-30.
Isolated membrane vesicles from Escherichia coli B grown on DL-alanine and glycerol carry out amino acid active transport coupled to a membrane-bound D-alanine dehydrogenase (Kaczorowski, G., Shaw, L., Fuentes, M., and Walsh, C. (1975) J. Biol. Chem. 250, 2855). Certain L-amino acids can also energize solute transport by conversion to their D isomers via an alanine reacemase. Both D-chloroalanine and L-chloroalanine initially drive amino acid and methyl-beta-thiogalactose uptake. The D isomer however causes rapid inactivation of both dehydrogenase-coupled transport and the phosphotransferase system. Transport functions can be protected by dithiothreitol which is postulated to act as a scavenging nucleophile. This inactivation by the D isomer is time-dependent and irreversible not only for proline transport but also for alpha-methylglucoside uptake. Unlike the D isomer, beta-chloro-L-alanine does not inactivate transport. L-Chloroalanine is not racemized to the D isomer but rather undergoes a racemase catalyzed beta elimination of chloride ion to produce pyruvate. Pyruvate can subsequently be oxidized to stimulate active transport. This pyridoxal phosphate-dependent racemase is inactivated by low concentrations of D-chloroalanine but the L isomer can only cause inactivation at a 40-fold higher concentration and longer times of exposure. The D-alanine dehydrogenase-catalyzed oxidation product of D-chloroalanine is chloropyruvate, and this keto acid is hypothesized to be the inactivating species of transport for the following reasons. Chloropyruvate has been isolated from D-chloroalanine oxidation but not from oxidation of the L isomer. Chlorolactate which can be oxidized to chloropyruvate (via membrane-bound lactate dehydrogenases) also causes inactivation of transport in E. coli K-12 membrane vesicles. Mutants having diminished lactate dehydrogenase activity show a slower rate of inactivation with chlorolactate. Moreover, synthetic chloropyruvate irreversibly inactivates both active transport of proline and phosphotransferase system-dependent group translocation of alpha-methylglucoside. The effects of D- and L-chloroalanine and chlorolactate on transport in membrane vesicles are also seen in whole cells.
在DL-丙氨酸和甘油上生长的大肠杆菌B分离出的膜泡可进行与膜结合的D-丙氨酸脱氢酶偶联的氨基酸主动运输(卡佐罗夫斯基,G.,肖,L.,富恩特斯,M.,和沃尔什,C.(1975年)《生物化学杂志》250,2855)。某些L-氨基酸也可通过丙氨酸消旋酶转化为其D-异构体来为溶质运输提供能量。D-氯丙氨酸和L-氯丙氨酸最初都能驱动氨基酸和甲基-β-硫代半乳糖的摄取。然而,D-异构体导致脱氢酶偶联运输和磷酸转移酶系统迅速失活。运输功能可被二硫苏糖醇保护,推测二硫苏糖醇起清除亲核试剂的作用。D-异构体的这种失活不仅对脯氨酸运输是时间依赖性且不可逆的,对α-甲基葡糖苷的摄取也是如此。与D-异构体不同,β-氯-L-丙氨酸不会使运输失活。L-氯丙氨酸不会消旋化为D-异构体,而是通过消旋酶催化β-消除氯离子生成丙酮酸。丙酮酸随后可被氧化以刺激主动运输。这种依赖磷酸吡哆醛的消旋酶会被低浓度的D-氯丙氨酸失活,但L-异构体只有在浓度高40倍且暴露时间更长时才会导致失活。D-氯丙氨酸经D-丙氨酸脱氢酶催化的氧化产物是氯丙酮酸,推测这种酮酸是运输失活的物质,原因如下。氯丙酮酸已从D-氯丙氨酸氧化产物中分离出来,但未从L-异构体的氧化产物中分离出来。可被氧化为氯丙酮酸(通过膜结合的乳酸脱氢酶)的氯乳酸也会导致大肠杆菌K-12膜泡中的运输失活。乳酸脱氢酶活性降低的突变体对氯乳酸的失活速率较慢。此外,合成的氯丙酮酸会不可逆地使脯氨酸的主动运输和磷酸转移酶系统依赖的α-甲基葡糖苷基团转运失活。D-和L-氯丙氨酸以及氯乳酸对膜泡运输的影响在完整细胞中也可见。