Suppr超能文献

盘基网柄菌细胞极性与质膜-细胞体偶联的微观力学研究

A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium.

作者信息

Merkel R, Simson R, Simson D A, Hohenadl M, Boulbitch A, Wallraff E, Sackmann E

机构信息

Fakultät für Physik, Lehrstuhl für Biophysik, Technische Universität München, D-85747 Garching, Germany.

出版信息

Biophys J. 2000 Aug;79(2):707-19. doi: 10.1016/S0006-3495(00)76329-6.

Abstract

We used micropipettes to aspirate leading and trailing edges of wild-type and mutant cells of Dictyostelium discoideum. Mutants were lacking either myosin II or talin, or both proteins simultaneously. Talin is a plasma membrane-associated protein important for the coupling between membrane and actin cortex, whereas myosin II is a cytoplasmic motor protein essential for the locomotion of Dictyostelium cells. Aspiration into the pipette occurred above a threshold pressure only. For all cells containing talin this threshold was significantly lower at the leading edge of an advancing cell as compared to its rear end, whereas we found no such difference in cells lacking talin. Wild-type and talin-deficient cells were able to retract from the pipette against an applied suction pressure. In these cells, retraction was preceded by an accumulation of myosin II in the tip of the aspirated cell lobe. Mutants lacking myosin II could not retract, even if the suction pressures were removed after aspiration. We interpreted the initial instability and the subsequent plastic deformation of the cell surface during aspiration in terms of a fracture between the cell plasma membrane and the cell body, which may involve destruction of part of the cortex. Models are presented that characterize the coupling strength between membrane and cell body by a surface energy sigma. We find sigma approximately 0.6(1.6) mJ/m(2) at the leading (trailing) edge of wild-type cells.

摘要

我们使用微量移液器吸取盘基网柄菌野生型和突变型细胞的前缘和后缘。突变体要么缺乏肌球蛋白II,要么缺乏踝蛋白,或者同时缺乏这两种蛋白质。踝蛋白是一种与质膜相关的蛋白质,对膜与肌动蛋白皮层之间的偶联很重要,而肌球蛋白II是一种细胞质运动蛋白,对盘基网柄菌细胞的运动至关重要。只有在高于阈值压力时才会被吸进移液器。对于所有含有踝蛋白的细胞,前进细胞前缘的这个阈值明显低于其后端,而在缺乏踝蛋白的细胞中我们没有发现这种差异。野生型和缺乏踝蛋白的细胞能够在施加的抽吸压力下从移液器中缩回。在这些细胞中,缩回之前会有肌球蛋白II在被抽吸细胞叶的尖端积累。缺乏肌球蛋白II的突变体即使在抽吸后去除抽吸压力也不能缩回。我们将抽吸过程中细胞表面的初始不稳定性和随后的塑性变形解释为细胞质膜与细胞体之间的断裂,这可能涉及皮层的部分破坏。提出了通过表面能σ来表征膜与细胞体之间偶联强度的模型。我们发现在野生型细胞的前缘(后缘)σ约为0.6(1.6) mJ/m² 。

相似文献

1
A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium.
Biophys J. 2000 Aug;79(2):707-19. doi: 10.1016/S0006-3495(00)76329-6.
3
Surface particle transport mechanism independent of myosin II in Dictyostelium.
Nature. 1992 Apr 2;356(6368):438-40. doi: 10.1038/356438a0.
4
A mechanical function of myosin II in cell motility.
J Cell Sci. 1995 Jan;108 ( Pt 1):387-93. doi: 10.1242/jcs.108.1.387.
5
Myosin I is located at the leading edges of locomoting Dictyostelium amoebae.
Nature. 1989 Sep 28;341(6240):328-31. doi: 10.1038/341328a0.
6
Mutants lacking myosin II cannot resist forces generated during multicellular morphogenesis.
J Cell Sci. 1995 Mar;108 ( Pt 3):1105-15. doi: 10.1242/jcs.108.3.1105.
7
Myosin II-independent F-actin flow contributes to cell locomotion in dictyostelium.
J Cell Sci. 1999 Mar;112 ( Pt 6):877-86. doi: 10.1242/jcs.112.6.877.
8
Dictyostelium myosin II null mutant can still cap Con A receptors.
Proc Natl Acad Sci U S A. 1997 Sep 2;94(18):9684-6. doi: 10.1073/pnas.94.18.9684.

引用本文的文献

1
A low-cost electric micromanipulator and its application to single-cell electroporation.
Biophys Physicobiol. 2025 Apr 26;22(2):e220010. doi: 10.2142/biophysico.bppb-v22.0010. eCollection 2025.
3
Role of particle local curvature in cellular wrapping.
J R Soc Interface. 2022 Nov;19(196):20220462. doi: 10.1098/rsif.2022.0462. Epub 2022 Nov 2.
4
Cells responding to chemoattractant on a structured substrate.
Biophys J. 2022 Jul 5;121(13):2557-2567. doi: 10.1016/j.bpj.2022.05.043. Epub 2022 May 28.
5
A flagellate-to-amoeboid switch in the closest living relatives of animals.
Elife. 2021 Jan 15;10:e61037. doi: 10.7554/eLife.61037.
6
In-flow measurement of cell-cell adhesion using oscillatory inertial microfluidics.
Lab Chip. 2020 May 7;20(9):1612-1620. doi: 10.1039/d0lc00089b. Epub 2020 Apr 17.
8
Eukaryotic Cell Dynamics from Crawlers to Swimmers.
Wiley Interdiscip Rev Comput Mol Sci. 2019 Jan-Feb;9(1). doi: 10.1002/wcms.1376. Epub 2018 Jul 19.
9
Image based modeling of bleb site selection.
Sci Rep. 2017 Jul 27;7(1):6692. doi: 10.1038/s41598-017-06875-9.
10
DNA cytoskeleton for stabilizing artificial cells.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7228-7233. doi: 10.1073/pnas.1702208114. Epub 2017 Jun 26.

本文引用的文献

1
Understanding the cortex of crawling cells: insights from Dictyostelium.
Trends Cell Biol. 1993 Nov;3(11):371-6. doi: 10.1016/0962-8924(93)90085-f.
3
Elasticity of semiflexible biopolymer networks.
Phys Rev Lett. 1995 Dec 11;75(24):4425-4428. doi: 10.1103/PhysRevLett.75.4425.
4
Entropy-driven tension and bending elasticity in condensed-fluid membranes.
Phys Rev Lett. 1990 Apr 23;64(17):2094-2097. doi: 10.1103/PhysRevLett.64.2094.
5
Temperature-induced sol-gel transition and microgel formation in alpha -actinin cross-linked actin networks: A rheological study.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):1802-1810. doi: 10.1103/physreve.54.1802.
6
Adhesion of vesicles.
Phys Rev A. 1990 Oct 15;42(8):4768-4771. doi: 10.1103/physreva.42.4768.
10
Interaction of cytoskeletal proteins with membrane lipids.
Int Rev Cytol. 1998;178:73-125. doi: 10.1016/s0074-7696(08)62136-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验