Mason N, Ciufo L F, Brown J D
Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Swann Building, The King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK.
EMBO J. 2000 Aug 1;19(15):4164-74. doi: 10.1093/emboj/19.15.4164.
Signal recognition particle (SRP) targets proteins for co-translational insertion through or into the endoplasmic reticulum membrane. Mammalian SRP slows nascent chain elongation by the ribosome during targeting in vitro. This 'elongation arrest' activity requires the SRP9/14 subunit of the particle and interactions of the C-terminus of SRP14. We have purified SRP from Saccharomyces cerevisiae and demonstrated that it too has elongation arrest activity. A yeast SRP containing Srp14p truncated at its C-terminus (delta C29) did not maintain elongation arrest, was substantially deficient in promoting translocation and interfered with targeting by wild-type SRP. In vivo, this mutation conferred a constitutive defect in the coupling of protein translation and translocation and temperature-sensitive growth, but only a slight defect in protein translocation. In combination, these data indicate that the primary defect in SRP delta C29 is in elongation arrest, and that this is a physiologically important and conserved function of eukaryotic SRP.
信号识别颗粒(SRP)通过共翻译插入将蛋白质靶向内质网膜或插入内质网膜。在体外靶向过程中,哺乳动物SRP会减缓核糖体新生链的延伸。这种“延伸停滞”活性需要该颗粒的SRP9/14亚基以及SRP14 C末端的相互作用。我们从酿酒酵母中纯化了SRP,并证明它也具有延伸停滞活性。含有在其C末端截短的Srp14p(δC29)的酵母SRP不能维持延伸停滞,在促进易位方面严重缺陷,并干扰野生型SRP的靶向。在体内,这种突变导致蛋白质翻译和易位偶联的组成性缺陷以及温度敏感生长,但在蛋白质易位方面只有轻微缺陷。综合这些数据表明,SRP δC29的主要缺陷在于延伸停滞,并且这是真核生物SRP的一种生理上重要且保守的功能。