Thomas Y, Bui N, Strub K
Département de Biologie Cellulaire, Université de Genève, Sciences III, CH-1211 Genève 4, Switzerland.
Nucleic Acids Res. 1997 May 15;25(10):1920-9. doi: 10.1093/nar/25.10.1920.
The signal recognition particle (SRP) provides the molecular link between synthesis of polypeptides and their concomitant translocation into the endoplasmic reticulum. During targeting, SRP arrests or delays elongation of the nascent chain, thereby presumably ensuring a high translocation efficiency. Components of the Alu domain, SRP9/14 and the Alu sequences of SRP RNA, have been suggested to play a role in the elongation arrest function of SRP. We generated a truncated SRP14 protein, SRP14-20C, which forms, together with SRP9, a stable complex with SRP RNA. However, particles reconstituted with SRP9/14-20C, RC(9/14-20C), completely lack elongation arrest activity. RC(9/14-20C) particles have intact signal recognition, targeting and ribosome binding activities. SRP9/14-20C therefore only impairs interactions with the ribosome that are required to effect elongation arrest. This result provides evidence that direct interactions between the Alu domain components and the ribosome are required for this function. Furthermore, SRP9/14-20C binding to SRP RNA results in tertiary structure changes in the RNA. Our results strongly indicate that these changes account for the negative effect of SRP14 truncation on elongation arrest, thus revealing a critical role of the RNA in this function.
信号识别颗粒(SRP)在多肽合成与其同时向内质网转运之间提供了分子联系。在靶向过程中,SRP会阻止或延迟新生链的延伸,从而可能确保较高的转运效率。有人提出,Alu结构域的组分、SRP9/14以及SRP RNA的Alu序列在SRP的延伸阻止功能中发挥作用。我们生成了一种截短的SRP14蛋白,即SRP14-20C,它与SRP9一起与SRP RNA形成稳定复合物。然而,用SRP9/14-20C重构的颗粒RC(9/14-20C)完全缺乏延伸阻止活性。RC(9/14-20C)颗粒具有完整的信号识别、靶向和核糖体结合活性。因此,SRP9/14-20C仅损害实现延伸阻止所需的与核糖体的相互作用。这一结果提供了证据,表明该功能需要Alu结构域组分与核糖体之间存在直接相互作用。此外,SRP9/14-20C与SRP RNA的结合会导致RNA的三级结构发生变化。我们的结果有力地表明,这些变化解释了SRP14截短对延伸阻止的负面影响,从而揭示了RNA在该功能中的关键作用。