Pilet J, Blicharski J, Brahms J
Biochemistry. 1975 May 6;14(9):1869-76. doi: 10.1021/bi00680a011.
Polydeoxynucleotides of different base sequence, the alternating poly[d(A-T)]-poly[d(A-T)], crab satellite DNA, on the one hand, and double-stranded homopolymer complexes poly[d(A)]-poly[d(T)], poly[d(I)]-poly[d(C)], on the other, display significant differences in their conformation and conformational transitions. Infrared linear dichroism investigations indicate that the alternating poly[d(A-T)]-poly[d(A-T)], enzymatically synthesized, adopts a lower humidity a well-expressed A* form in which stability is relatively small,i.e., restricted to limited relative humidity. This A form is characterized by the orientation of the bisector of the phosphate OPO group at 34 degrees with respect to the helical axis, which is slightly lower than that of DNA. In contrast, for the homopolynucleotide double-stranded complex poly(dA)-poly(dT) and also for poly(dI)-poly(dC), the B yields A conformational change is not observed. Instead poly(dA)-poly(dT) exists at lower humidity in a stable modified B form. Thus the present results indicate that homo(dA)-homo(dT) double-stranded sequences prevent the B yields A structural transition. All AT-containing polydeoxynucleotides and crab satellite DNA adopt a high humidity a modified B form characterized by the orientation of the bisector of the phosphate group OPO at 64 degrees with respect to the helical axis which is significantly lower than 68-74 degrees observed in DNAs. The base pairing geometry in poly(dA)-poly(dT), poly[d(A-T)]-poly[d(A-T)], and also in poly(dI)-poly(dC) is apparently a Watson and Crick type. Thus the observed differences in conformation are not due to different base pairing scheme. It is suggested that in DNAs of high AT content the presence of homo(dT)-homo(dA) sequences and the relatively low stability of the A form of d(A-T) alternating sequences may inhibit the change to the A form. A possible role of these sequences in DNA recognition by protein is suggested.
不同碱基序列的多脱氧核苷酸,一方面是交替的聚[d(A-T)]-聚[d(A-T)],即蟹卫星DNA,另一方面是双链均聚物复合物聚[d(A)]-聚[d(T)]、聚[d(I)]-聚[d(C)],它们在构象和构象转变方面表现出显著差异。红外线性二色性研究表明,酶促合成的交替聚[d(A-T)]-聚[d(A-T)]在较低湿度下呈现出一种表达良好的A*形式,其稳定性相对较小,即仅限于有限的相对湿度范围。这种A形式的特征是磷酸根OPO基团的平分线相对于螺旋轴的取向为34度,略低于DNA的该角度。相比之下,对于均聚核苷酸双链复合物聚(dA)-聚(dT)以及聚(dI)-聚(dC),未观察到B向A的构象变化。相反,聚(dA)-聚(dT)在较低湿度下以稳定的修饰B形式存在。因此,目前的结果表明,同聚(dA)-同聚(dT)双链序列可阻止B向A的结构转变。所有含AT的多脱氧核苷酸和蟹卫星DNA在高湿度下都呈现出一种修饰的B形式,其特征是磷酸基团OPO的平分线相对于螺旋轴的取向为64度,明显低于在DNA中观察到的68 - 74度。聚(dA)-聚(dT)、聚[d(A-T)]-聚[d(A-T)]以及聚(dI)-聚(dC)中的碱基配对几何结构显然是沃森-克里克型。因此,观察到的构象差异并非由于不同的碱基配对方式。有人提出,在高AT含量的DNA中,同聚(dT)-同聚(dA)序列的存在以及d(A-T)交替序列A形式相对较低的稳定性可能会抑制向A形式的转变。还提出了这些序列在蛋白质识别DNA过程中的可能作用。