Pothos E M, Bailey T M
School of Psychology, University of Wales, Bangor, Wales.
J Exp Psychol Learn Mem Cogn. 2000 Jul;26(4):847-62. doi: 10.1037//0278-7393.26.4.847.
The authors examine the role of similarity in artificial grammar learning (AGL; A. S. Reber, 1989). A standard finite-state language was used to create stimuli that were arrangements of embedded geometric shapes (Experiment 1), connected lines (Experiment 2), and sequences of shapes (Experiment 3). Main effects for well-known predictors from the literature (grammaticality, associative global and anchor chunk strength, novel global and anchor chunk strength, length of items, and edit distance) were observed, thus replicating previous work. However, the authors extend previous research by using a widely known similarity-based exemplar model of categorization (the generalized context model; R. M. Nosofsky, 1989) to fit grammaticality judgments, by nested regression analyses. The results suggest that any explanation of AGL that is based on the existing theories is incomplete without a similarity process as well. Also, the results provide a foundation for further interpreting AGL in the wider context of categorization research.
作者们考察了相似性在人工语法学习(AGL;A. S. 雷伯,1989)中的作用。使用一种标准的有限状态语言来创建由嵌入式几何形状排列组成的刺激(实验1)、连接线(实验2)以及形状序列(实验3)。观察到了文献中一些知名预测因素的主效应(语法性、联想性全局和锚定组块强度、新颖的全局和锚定组块强度、项目长度以及编辑距离),从而重复了之前的研究。然而,作者们通过使用一种广为人知的基于相似性的分类范例模型(广义语境模型;R. M. 诺索夫斯基,1989),通过嵌套回归分析来拟合语法性判断,从而扩展了先前的研究。结果表明,任何基于现有理论对AGL的解释如果没有相似性过程也是不完整的。此外,这些结果为在更广泛的分类研究背景下进一步解释AGL提供了基础。