Suppr超能文献

实例理论预测了在没有类别结构的情况下的分类决策:对没有语法的人工语法学习的计算分析。

Instance theory predicts categorization decisions in the absence of categorical structure: A computational analysis of artificial grammar learning without a grammar.

机构信息

Booth University College, 447 Webb Place, Winnipeg, MB, R3B 2P2, Canada.

出版信息

Mem Cognit. 2024 Jan;52(1):132-145. doi: 10.3758/s13421-023-01449-9. Epub 2023 Aug 11.

Abstract

Theories of categorization have historically focused on the stimulus characteristics to which people are sensitive. Artificial grammar learning (AGL) provides a clear example of this phenomenon, with theorists debating between knowledge of rules, fragments, whole strings, and so on as the basis of categorization decisions (i.e., stimulus-driven explanations). We argue that this focus loses sight of the more important question of how participants make categorization decisions on a mechanistic level (i.e., process-driven explanations). To address the problem, we derived predictions from an instance-based model of human memory in a pseudo-AGL task in which all study and test strings were generated randomly, a task that stimulus-driven explanations of AGL would have difficulty accommodating. We conducted a standard AGL experiment with human participants using the same strings. The model's predictions corresponded to participants' decisions well, even in the absence of any experimenter-generated structure and regardless of whether test stimuli contained any incidental structure. We argue that theories of categorization ought to continue shifting towards the goal of modeling categorization at the level of cognitive processes rather than primarily attempting to identify the stimulus characteristics to which participants are drawn.

摘要

分类理论在历史上一直侧重于人们敏感的刺激特征。人工语法学习 (AGL) 为这种现象提供了一个明确的例子,理论家们在规则、片段、整个字符串等作为分类决策基础的知识之间进行争论(即刺激驱动的解释)。我们认为,这种关注忽略了更重要的问题,即参与者如何在机械层面上做出分类决策(即过程驱动的解释)。为了解决这个问题,我们从基于实例的人类记忆模型中推导出了预测,该模型在一个伪 AGL 任务中使用了所有学习和测试字符串都是随机生成的,而 AGL 的刺激驱动解释在这个任务中很难适应。我们使用相同的字符串进行了一项标准的 AGL 实验。模型的预测与参与者的决策非常吻合,即使没有任何实验者生成的结构,也不管测试刺激是否包含任何偶然的结构。我们认为,分类理论应该继续朝着在认知过程层面上建模分类的目标转移,而不是主要试图识别参与者被吸引的刺激特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验