Suppr超能文献

噪声抑制神经网络中的同步簇

Synchronous clusters in a noisy inhibitory neural network.

作者信息

Tiesinga P H, José J V

机构信息

Sloan Center for Theoretical Neurobiology, Salk Institute, La Jolla, CA 92037, USA.

出版信息

J Comput Neurosci. 2000 Jul-Aug;9(1):49-65. doi: 10.1023/a:1008986311274.

Abstract

We study the stability and information encoding capacity of synchronized states in a neuronal network model that represents part of thalamic circuitry. Our model neurons have a Hodgkin-Huxley-type low-threshold calcium channel, display postinhibitory rebound, and are connected via GABAergic inhibitory synapses. We find that there is a threshold in synaptic strength, tau(c), below which there are no stable spiking network states. Above threshold the stable spiking state is a cluster state, where different groups of neurons fire consecutively, and each neuron fires with the same cluster each time. Weak noise destabilizes this state, but stronger noise drives the system into a different, self-organized, stochastically synchronized state. Neuronal firing is still organized in clusters, but individual neurons can hop from cluster to cluster. Noise can actually induce and sustain such a state below the threshold of synaptic strength. We do find a qualitative difference in the firing patterns between small (approximately 10 neurons) and large (approximately 1000 neurons) networks. We determine the information content of the spike trains in terms of two separate contributions: the spike-time jitter around cluster firing times, and the hopping from cluster to cluster. We quantify the information loss due to temporally correlated interspike intervals. Recent experiments on the locust olfactory system and striatal neurons suggest that the nervous system may actually use these two channels to encode separate and unique information.

摘要

我们研究了一个代表丘脑电路部分的神经网络模型中同步状态的稳定性和信息编码能力。我们的模型神经元具有霍奇金-赫胥黎型低阈值钙通道,表现出抑制后反弹,并通过GABA能抑制性突触连接。我们发现,在突触强度τ(c)存在一个阈值,低于该阈值则不存在稳定的发放网络状态。高于阈值时,稳定的发放状态是一种簇状状态,不同组的神经元依次发放,并且每个神经元每次都与同一簇同步发放。弱噪声会使这种状态不稳定,但较强的噪声会将系统驱动到另一种不同的、自组织的、随机同步的状态。神经元发放仍以簇状组织,但单个神经元可以从一个簇跳到另一个簇。实际上,噪声可以在低于突触强度阈值时诱导并维持这种状态。我们确实发现小网络(约10个神经元)和大网络(约1000个神经元)的发放模式存在质的差异。我们根据两个独立的贡献来确定尖峰序列的信息内容:围绕簇发放时间的尖峰时间抖动,以及从一个簇到另一个簇的跳跃。我们量化了由于尖峰间隔时间相关而导致的信息损失。最近对蝗虫嗅觉系统和纹状体神经元的实验表明,神经系统实际上可能利用这两个通道来编码单独且独特的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验