Suppr超能文献

分流抑制改善 1 型兴奋性异质抑制性神经元网络的同步性,而超极化抑制对 2 型兴奋性更好。

Shunting Inhibition Improves Synchronization in Heterogeneous Inhibitory Interneuronal Networks with Type 1 Excitability Whereas Hyperpolarizing Inhibition Is Better for Type 2 Excitability.

机构信息

Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112.

Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA 70112

出版信息

eNeuro. 2020 May 8;7(3). doi: 10.1523/ENEURO.0464-19.2020. Print 2020 May/Jun.

Abstract

All-to-all homogeneous networks of inhibitory neurons synchronize completely under the right conditions; however, many modeling studies have shown that biological levels of heterogeneity disrupt synchrony. Our fundamental scientific question is "how can neurons maintain partial synchrony in the presence of heterogeneity and noise?" A particular subset of strongly interconnected interneurons, the PV+ fast-spiking (FS) basket neurons, are strongly implicated in γ oscillations and in phase locking of nested γ oscillations to theta. Their excitability type apparently varies between brain regions: in CA1 and the dentate gyrus they have type 1 excitability, meaning that they can fire arbitrarily slowly, whereas in the striatum and cortex they have type 2 excitability, meaning that there is a frequency thresh old below which they cannot sustain repetitive firing. We constrained the models to study the effect of excitability type (more precisely bifurcation type) in isolation from all other factors. We use sparsely connected, heterogeneous, noisy networks with synaptic delays to show that synchronization properties, namely the resistance to suppression and the strength of theta phase to γ amplitude coupling, are strongly dependent on the pairing of excitability type with the type of inhibition. Shunting inhibition performs better for type 1 and hyperpolarizing inhibition for type 2. γ Oscillations and their nesting within theta oscillations are thought to subserve cognitive functions like memory encoding and recall; therefore, it is important to understand the contribution of intrinsic properties to these rhythms.

摘要

所有抑制性神经元之间的全互连接同质网络在适当条件下会完全同步;然而,许多建模研究表明,生物水平的异质性会破坏同步性。我们的基本科学问题是“神经元如何在存在异质性和噪声的情况下保持部分同步?” 一组特别强相互连接的中间神经元,即 PV+快速放电(FS)篮状神经元,强烈参与γ振荡和嵌套γ振荡到θ的相位锁定。它们的兴奋性类型显然在不同脑区之间有所不同:在 CA1 和齿状回中,它们具有 1 型兴奋性,这意味着它们可以任意缓慢地放电,而在纹状体和皮层中,它们具有 2 型兴奋性,这意味着存在一个频率阈值,低于该阈值,它们无法维持重复放电。我们将模型限制为仅研究兴奋性类型(更准确地说是分岔类型)对所有其他因素的影响。我们使用具有突触延迟的稀疏连接、异质、噪声网络来表明同步特性,即对抑制的抵抗力和θ相位到γ幅度耦合的强度,强烈依赖于兴奋性类型与抑制类型的配对。分流抑制对 1 型更有效,而超极化抑制对 2 型更有效。γ振荡及其在θ振荡内嵌套被认为有助于记忆编码和回忆等认知功能;因此,了解内在特性对这些节律的贡献很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6383/7210489/ed5f11f3ec57/SN-ENUJ200068F001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验