Kim S W, Sun D
Department of Statistics, University of Missouri, Columbia 65211, USA.
Lifetime Data Anal. 2000 Sep;6(3):251-69. doi: 10.1023/a:1009641709382.
In Bayesian model selection or testing problems one cannot utilize standard or default noninformative priors, since these priors are typically improper and are defined only up to arbitrary constants. Therefore, Bayes factors and posterior probabilities are not well defined under these noninformative priors, making Bayesian model selection and testing problems impossible. We derive the intrinsic Bayes factor (IBF) of Berger and Pericchi (1996a, 1996b) for the commonly used models in reliability and survival analysis using an encompassing model. We also derive proper intrinsic priors for these models, whose Bayes factors are asymptotically equivalent to the respective IBFs. We demonstrate our results in three examples.
在贝叶斯模型选择或检验问题中,不能使用标准或默认的无信息先验,因为这些先验通常是不合适的,且仅由任意常数定义。因此,在这些无信息先验下,贝叶斯因子和后验概率没有良好的定义,使得贝叶斯模型选择和检验问题无法进行。我们使用一个包含模型,推导了Berger和Pericchi(1996a,1996b)在可靠性和生存分析中常用模型的内在贝叶斯因子(IBF)。我们还推导了这些模型的合适内在先验,其贝叶斯因子与各自的IBF渐近等价。我们在三个例子中展示了我们的结果。