Suppr超能文献

预设敏感性分析在贝叶斯结构方程建模中的应用。

Prior sensitivity analysis in default Bayesian structural equation modeling.

机构信息

Department of Methodology and Statistics, Tilburg University.

Department of Methodology and Statistics, Utrecht University.

出版信息

Psychol Methods. 2018 Jun;23(2):363-388. doi: 10.1037/met0000162. Epub 2017 Nov 27.

Abstract

Bayesian structural equation modeling (BSEM) has recently gained popularity because it enables researchers to fit complex models and solve some of the issues often encountered in classical maximum likelihood estimation, such as nonconvergence and inadmissible solutions. An important component of any Bayesian analysis is the prior distribution of the unknown model parameters. Often, researchers rely on default priors, which are constructed in an automatic fashion without requiring substantive prior information. However, the prior can have a serious influence on the estimation of the model parameters, which affects the mean squared error, bias, coverage rates, and quantiles of the estimates. In this article, we investigate the performance of three different default priors: noninformative improper priors, vague proper priors, and empirical Bayes priors-with the latter being novel in the BSEM literature. Based on a simulation study, we find that these three default BSEM methods may perform very differently, especially with small samples. A careful prior sensitivity analysis is therefore needed when performing a default BSEM analysis. For this purpose, we provide a practical step-by-step guide for practitioners to conducting a prior sensitivity analysis in default BSEM. Our recommendations are illustrated using a well-known case study from the structural equation modeling literature, and all code for conducting the prior sensitivity analysis is available in the online supplemental materials. (PsycINFO Database Record

摘要

贝叶斯结构方程建模(BSEM)最近越来越受欢迎,因为它使研究人员能够拟合复杂的模型,并解决经典最大似然估计中经常遇到的一些问题,例如不收敛和不可接受的解决方案。任何贝叶斯分析的一个重要组成部分是未知模型参数的先验分布。通常,研究人员依赖于默认先验,这些先验是自动构建的,不需要实质性的先验信息。然而,先验可以对模型参数的估计产生严重影响,从而影响估计的均方误差、偏差、覆盖率和分位数。在本文中,我们研究了三种不同的默认先验的性能:非信息不当先验、模糊适当先验和经验贝叶斯先验——后一种在 BSEM 文献中是新颖的。基于一项模拟研究,我们发现这三种默认的 BSEM 方法可能表现得非常不同,尤其是在小样本的情况下。因此,在进行默认 BSEM 分析时,需要进行仔细的先验敏感性分析。为此,我们为从业者提供了一个实用的逐步指南,用于在默认 BSEM 中进行先验敏感性分析。我们的建议通过一个来自结构方程建模文献中的知名案例研究来说明,并在在线补充材料中提供了进行先验敏感性分析的所有代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验