Yasui Y, Liu H, Benach J, Winget M
Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., MP702, Seattle, WA 98109-1024, USA. yyasui@fhcrc,org
Stat Med. 2000;19(17-18):2409-20. doi: 10.1002/1097-0258(20000915/30)19:17/18<2409::aid-sim578>3.0.co;2-u.
Empirical and fully Bayes estimation of small area disease risks places a prior distribution on area-specific risks. Several forms of priors have been used for this purpose including gamma, log-normal and non-parametric priors. Spatial correlation among area-specific risks can be incorporated in log-normal priors using Gaussian Markov random fields or other models of spatial dependence. However, the criterion for choosing one prior over others has been mostly logical reasoning. In this paper, we evaluate empirically the various priors used in the empirical Bayes estimation of small area disease risks. We utilize a Spanish mortality data set of a 12-year period to give the underlying true risks, and estimate the true risks using only a 3-year portion of the data set. Empirical Bayes estimates are shown to have substantially smaller mean squared errors than Poisson likelihood-based estimates. However, relative performances of various priors differ across a variety of mortality outcomes considered. In general, the non-parametric prior provides good estimates for lower-risk areas, while spatial priors provide good estimates for higher-risk areas. Ad hoc composite estimates averaging the estimates from the non-parametric prior and those from a spatial log-normal prior appear to perform well overall. This suggests that an empirical Bayes prior that strikes a balance between these two priors, if one can construct such a prior, may prove to be useful for the estimation of small area disease risks.
小区域疾病风险的经验贝叶斯估计和完全贝叶斯估计对特定区域风险设定了先验分布。为此使用了多种先验形式,包括伽马先验、对数正态先验和非参数先验。特定区域风险之间的空间相关性可以通过高斯马尔可夫随机场或其他空间依赖模型纳入对数正态先验。然而,选择一种先验而非其他先验的标准主要是逻辑推理。在本文中,我们通过实证评估了用于小区域疾病风险经验贝叶斯估计的各种先验。我们利用一个12年期间的西班牙死亡率数据集来给出潜在的真实风险,并仅使用该数据集的3年部分来估计真实风险。结果表明,经验贝叶斯估计的均方误差比基于泊松似然的估计要小得多。然而,在考虑的各种死亡率结果中,不同先验的相对表现有所不同。一般来说,非参数先验对低风险区域能提供良好的估计,而空间先验对高风险区域能提供良好的估计。将非参数先验的估计和空间对数正态先验的估计进行平均的特设综合估计总体上似乎表现良好。这表明,如果能够构建这样一种在这两种先验之间取得平衡的经验贝叶斯先验,可能对小区域疾病风险的估计有用。