Suppr超能文献

酿酒酵母的力学特性。

The mechanical properties of Saccharomyces cerevisiae.

作者信息

Smith A E, Zhang Z, Thomas C R, Moxham K E, Middelberg A P

机构信息

Departments of Chemical Engineering and Civil and Environmental Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia.

出版信息

Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9871-4. doi: 10.1073/pnas.97.18.9871.

Abstract

Cell-wall mechanical properties play an integral part in the growth and form of Saccharomyces cerevisiae. In contrast to the tremendous knowledge on the genetics of S. cerevisiae, almost nothing is known about its mechanical properties. We have developed a micromanipulation technique to measure the force required to burst single cells and have recently established a mathematical model to extract the mechanical properties of the cell wall from such data. Here we determine the average surface modulus of the S. cerevisiae cell wall to be 11.1 +/- 0.6 N/m and 12.9 +/- 0.7 N/m in exponential and stationary phases, respectively, giving corresponding Young's moduli of 112 +/- 6 MPa and 107 +/- 6 MPa. This result demonstrates that yeast cell populations strengthen as they enter stationary phase by increasing wall thickness and hence the surface modulus, without altering the average elastic properties of the cell-wall material. We also determined the average breaking strain of the cell wall to be 82% +/- 3% in exponential phase and 80% +/- 3% in stationary phase. This finding provides a failure criterion that can be used to predict when applied stresses (e.g., because of fluid flow) will lead to wall rupture. This work analyzes yeast compression experiments in different growth phases by using engineering methodology.

摘要

细胞壁的力学性质在酿酒酵母的生长和形态形成中起着不可或缺的作用。与对酿酒酵母遗传学的大量了解形成对比的是,人们对其力学性质几乎一无所知。我们开发了一种显微操作技术来测量使单个细胞破裂所需的力,并且最近建立了一个数学模型,以便从这些数据中提取细胞壁的力学性质。在此,我们确定酿酒酵母细胞壁在指数生长期和稳定期的平均表面模量分别为11.1±0.6 N/m和12.9±0.7 N/m,相应的杨氏模量分别为112±6 MPa和107±6 MPa。这一结果表明,酵母细胞群体在进入稳定期时会通过增加细胞壁厚度从而增加表面模量来增强细胞壁,而不会改变细胞壁材料的平均弹性性质。我们还确定了细胞壁在指数生长期的平均断裂应变是82%±3%,在稳定期是80%±3%。这一发现提供了一个失效准则,可用于预测施加的应力(例如由于流体流动)何时会导致细胞壁破裂。这项工作通过使用工程方法分析了酵母在不同生长阶段的压缩实验。

相似文献

1
The mechanical properties of Saccharomyces cerevisiae.
Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):9871-4. doi: 10.1073/pnas.97.18.9871.
2
Determining the mechanical properties of yeast cell walls.
Biotechnol Prog. 2011 Mar-Apr;27(2):505-12. doi: 10.1002/btpr.554. Epub 2011 Feb 28.
4
The stress response protein Hsp12p increases the flexibility of the yeast Saccharomyces cerevisiae cell wall.
Biochim Biophys Acta. 2007 Jan;1774(1):131-7. doi: 10.1016/j.bbapap.2006.10.009. Epub 2006 Oct 27.
5
Elastic properties of the cell wall of Aspergillus nidulans studied with atomic force microscopy.
Biotechnol Prog. 2005 Jan-Feb;21(1):292-9. doi: 10.1021/bp0497233.
6
Mechanical double layer model for Saccharomyces cerevisiae cell wall.
Eur Biophys J. 2013 Aug;42(8):613-20. doi: 10.1007/s00249-013-0909-x. Epub 2013 May 8.
7
Modelling the mechanical properties of single suspension-cultured tomato cells.
Ann Bot. 2004 Apr;93(4):443-53. doi: 10.1093/aob/mch062.
8
Effects of spaceflight on polysaccharides of Saccharomyces cerevisiae cell wall.
Appl Microbiol Biotechnol. 2008 Dec;81(3):543-50. doi: 10.1007/s00253-008-1692-y. Epub 2008 Sep 17.
10
Quantification of the Young's modulus of the primary plant cell wall using Bending-Lab-On-Chip (BLOC).
Lab Chip. 2013 Jul 7;13(13):2599-608. doi: 10.1039/c3lc00012e. Epub 2013 Apr 10.

引用本文的文献

2
The "weaken-fill-repair" model for cell budding: Linking cell wall biosynthesis with mechanics.
iScience. 2024 Sep 18;27(10):110981. doi: 10.1016/j.isci.2024.110981. eCollection 2024 Oct 18.
3
Optimization of the fluorogen-activating protein tag for quantitative protein trafficking and colocalization studies in .
Mol Biol Cell. 2024 Jul 1;35(7):mr5. doi: 10.1091/mbc.E24-04-0174. Epub 2024 May 29.
4
Penetrating the ultra-tough yeast cell wall with finite element analysis model-aided design of microtools.
iScience. 2024 Mar 16;27(4):109503. doi: 10.1016/j.isci.2024.109503. eCollection 2024 Apr 19.
5
Controlling shape morphing and cell release in engineered living materials.
Biomater Adv. 2022 Dec;143:213182. doi: 10.1016/j.bioadv.2022.213182. Epub 2022 Nov 2.
6
Bending stiffness of hyphae as a proxy of cell wall properties.
Lab Chip. 2022 Oct 11;22(20):3898-3909. doi: 10.1039/d2lc00219a.
8
Effects of Nanopillar Size and Spacing on Mechanical Perturbation and Bactericidal Killing Efficiency.
Nanomaterials (Basel). 2021 Sep 22;11(10):2472. doi: 10.3390/nano11102472.
9
Slipstreaming Mother Machine: A Microfluidic Device for Single-Cell Dynamic Imaging of Yeast.
Micromachines (Basel). 2020 Dec 22;12(1):4. doi: 10.3390/mi12010004.
10
Osmolyte homeostasis controls single-cell growth rate and maximum cell size of .
NPJ Syst Biol Appl. 2019 Sep 26;5:34. doi: 10.1038/s41540-019-0111-6. eCollection 2019.

本文引用的文献

1
Determination of cells' water membrane permeability: unexpected high osmotic permeability of Saccharomyces cerevisiae.
Biotechnol Bioeng. 1997 Oct 5;56(1):62-70. doi: 10.1002/(SICI)1097-0290(19971005)56:1<62::AID-BIT7>3.0.CO;2-T.
3
Measuring elasticity of biological materials by atomic force microscopy.
FEBS Lett. 1998 Jun 23;430(1-2):12-6. doi: 10.1016/s0014-5793(98)00592-4.
4
From morphogenes to morphogenesis.
Microbiology (Reading). 1995 Nov;141 ( Pt 11):2765-78. doi: 10.1099/13500872-141-11-2765.
5
Review: cell wall assembly in yeast.
Yeast. 1994 Jul;10(7):851-69. doi: 10.1002/yea.320100702.
6
Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.
Microbiol Rev. 1995 Sep;59(3):345-86. doi: 10.1128/mr.59.3.345-386.1995.
8
Mechanical behaviour of bacterial cell walls.
Adv Microb Physiol. 1991;32:173-222. doi: 10.1016/s0065-2911(08)60008-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验