Suppr超能文献

序列特异性标记的16S rRNA基因寡核苷酸探针在通过阵列杂交对蓝藻丰度和多样性进行遗传分析中的应用。

Application of sequence-specific labeled 16S rRNA gene oligonucleotide probes for genetic profiling of cyanobacterial abundance and diversity by array hybridization.

作者信息

Rudi K, Skulberg O M, Skulberg R, Jakobsen K S

机构信息

Division of General Genetics, Department of Biology, University of Oslo, 0315 Oslo, Norway.

出版信息

Appl Environ Microbiol. 2000 Sep;66(9):4004-11. doi: 10.1128/AEM.66.9.4004-4011.2000.

Abstract

DNA sequence information for the small-subunit rRNA gene (16S rDNA) obtained from cyanobacterial cultures was used to investigate the presence of cyanobacteria and their abundance in natural habitats. Eight planktonic communities developing in lakes characterized by relatively low algal biomass (mesotrophic) and in lakes with correspondingly high biomass (eutrophic) were selected for the study. The organismal compositions of the water samples were analyzed genetically, using multiplex sequence-specific labeling of oligonucleotide probes targeted to 16S rDNA and subsequent hybridization of the labeled probes to their respective complements spotted onto a solid support (DNA array). Ten probes were established to determine the relative abundances of the discernible cyanobacteria encountered in the selected lakes. The probes were generally specific for their targets, as determined through analyses of clone cultures. Reproducible abundance profiles were established for the lakes investigated in the subsequent analyses of natural cyanobacterial communities. The results from the genetic analyses were then compared with information obtained from standard hydrobiological and hydrochemical analyses. Qualitatively, there were relatively good correlations among the groups of organisms (Nostoc, Microcystis, and Planktothrix species) found in the different lakes. The levels of correlation were lower for the quantitative data. This may, however, be due to differences in sample processing technique. The conclusions from these comparisons are that the genetic abundance profiles may provide a foundation for separating and quantifying genetically distinct groups of cyanobacteria in their natural habitats.

摘要

从蓝藻培养物中获得的小亚基rRNA基因(16S rDNA)的DNA序列信息,被用于研究自然栖息地中蓝藻的存在情况及其丰度。本研究选取了八个浮游生物群落,它们分别来自藻类生物量相对较低(中营养型)的湖泊以及相应生物量较高(富营养型)的湖泊。利用针对16S rDNA的寡核苷酸探针进行多重序列特异性标记,并将标记后的探针与点样在固体支持物上(DNA阵列)的各自互补序列进行杂交,从而对水样中的生物组成进行基因分析。建立了十个探针,以确定所选湖泊中可识别的蓝藻的相对丰度。通过对克隆培养物的分析确定,这些探针通常对其靶标具有特异性。在随后对自然蓝藻群落的分析中,为所研究的湖泊建立了可重复的丰度图谱。然后将基因分析的结果与通过标准水生生物学和水化学分析获得的信息进行比较。定性地说,在不同湖泊中发现(念珠藻属、微囊藻属和席藻属物种)的生物类群之间存在相对良好的相关性。定量数据的相关性水平较低。然而,这可能是由于样品处理技术的差异所致。这些比较得出的结论是,基因丰度图谱可为在自然栖息地中分离和定量遗传上不同的蓝藻群体提供基础。

相似文献

3
5
Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica.
ISME J. 2008 Mar;2(3):308-20. doi: 10.1038/ismej.2007.104. Epub 2008 Jan 31.
7
Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes.
FEMS Microbiol Ecol. 2006 Aug;57(2):272-89. doi: 10.1111/j.1574-6941.2006.00110.x.
8
Contrasting microcystin production and cyanobacterial population dynamics in two Planktothrix-dominated freshwater lakes.
Environ Microbiol. 2005 Oct;7(10):1514-24. doi: 10.1111/j.1462-2920.2005.00858.x.
9
Picobenthic cyanobacterial populations revealed by 16S rRNA-targeted in situ hybridization.
Environ Microbiol. 2002 Jul;4(7):375-82. doi: 10.1046/j.1462-2920.2002.00307.x.
10

引用本文的文献

1
Genetic divergence among toxic and non-toxic cyanobacteria of the dry zone of Sri Lanka.
Springerplus. 2016 Nov 28;5(1):2026. doi: 10.1186/s40064-016-3680-5. eCollection 2016.
2
Phylogeny and biogeography of cyanobacteria and their produced toxins.
Mar Drugs. 2013 Nov 1;11(11):4350-69. doi: 10.3390/md11114350.
3
Specific discrimination of three pathogenic Salmonella enterica subsp. enterica serotypes by carB-based oligonucleotide microarray.
Appl Environ Microbiol. 2014 Jan;80(1):366-73. doi: 10.1128/AEM.02978-13. Epub 2013 Nov 1.
4
Introduction to project MIDTAL: its methods and samples from Arcachon Bay, France.
Environ Sci Pollut Res Int. 2013 Oct;20(10):6690-704. doi: 10.1007/s11356-012-1299-9. Epub 2012 Nov 22.
5
Identification and enumeration of Microcystis using a sandwich hybridization assay.
J Microbiol. 2012 Apr;50(2):186-90. doi: 10.1007/s12275-012-1418-9. Epub 2012 Apr 27.
7
Technology development to explore the relationship between oral health and the oral microbial community.
BMC Oral Health. 2006 Jun 15;6 Suppl 1(Suppl 1):S10. doi: 10.1186/1472-6831-6-S1-S10.
8
Microarray applications in microbial ecology research.
Microb Ecol. 2006 Aug;52(2):159-75. doi: 10.1007/s00248-006-9072-6. Epub 2006 Aug 8.
10
Development and evaluation of genome-probing microarrays for monitoring lactic acid bacteria.
Appl Environ Microbiol. 2005 Dec;71(12):8825-35. doi: 10.1128/AEM.71.12.8825-8835.2005.

本文引用的文献

1
Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis.
J Eukaryot Microbiol. 1999 Jul-Aug;46(4):327-38. doi: 10.1111/j.1550-7408.1999.tb04612.x.
2
Polyphasic approach to the characterisation of marine luminous bacteria.
Res Microbiol. 1999 Apr;150(3):221-30. doi: 10.1016/s0923-2508(99)80039-4.
3
In situ identification of cyanobacteria with horseradish peroxidase-labeled, rRNA-targeted oligonucleotide probes.
Appl Environ Microbiol. 1999 Mar;65(3):1259-67. doi: 10.1128/AEM.65.3.1259-1267.1999.
4
Quantifying microbial diversity: morphotypes, 16S rRNA genes, and carotenoids of oxygenic phototrophs in microbial mats.
Appl Environ Microbiol. 1999 Feb;65(2):422-30. doi: 10.1128/AEM.65.2.422-430.1999.
6
Evolution of cyanobacteria by exchange of genetic material among phyletically related strains.
J Bacteriol. 1998 Jul;180(13):3453-61. doi: 10.1128/JB.180.13.3453-3461.1998.
7
Development of a direct in situ PCR method for detection of specific bacteria in natural environments.
Appl Environ Microbiol. 1998 Apr;64(4):1536-40. doi: 10.1128/AEM.64.4.1536-1540.1998.
8
Bacterial transcript imaging by hybridization of total RNA to oligonucleotide arrays.
Nat Biotechnol. 1998 Jan;16(1):45-8. doi: 10.1038/nbt0198-45.
9
DNA chips: an array of possibilities.
Nat Biotechnol. 1998 Jan;16(1):27-31. doi: 10.1038/nbt0198-27.
10
Detection of toxin-producing cyanobacteria by use of paramagnetic beads for cell concentration and DNA purification.
Appl Environ Microbiol. 1998 Jan;64(1):34-7. doi: 10.1128/AEM.64.1.34-37.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验