Brányik T, Kuncová G, Páca J
Institute of Chemical Process Fundamentals, Prague, Czech Republic.
Appl Microbiol Biotechnol. 2000 Aug;54(2):168-72. doi: 10.1007/s002530000366.
A mixed microbial culture was immobilized by entrapment into silica gel (SG) and entrapment/ adsorption on polyurethane foam (PU) and ceramic foam. The phenol degradation performance of the SG biocatalyst was studied in a packed-bed reactor (PBR), packed-bed reactor with ceramic foam (PBRC) and fluidized-bed reactor (FBR). In continuous experiments the maximum degradation rate of phenol (q(s)max) decreased in the order: PBRC (598 mg l(-1) h(-1)) > PBR (PU, 471 mg l(-1)h(-1)) > PBR(SG, 394 mg l(-1) h(-1)) > FBR (PU, 161 mg l(-1) h(-1)) > FBR (SG, 91 mg l(-1) h(-1)). The long-term use of the SG biocatalyst in continuous phenol degradation resulted in the formation of a 100-200 microm thick layer with a high cell density on the surface of the gel particles. The abrasion of the surface layer in the FBR contributed to the poor degradation performance of this reactor configuration. Coating the ceramic foam with a layer of cells immobilized in colloidal SiO2 enhanced the phenol degradation efficiency during the first 3 days of the PBRC operation, in comparison with untreated ceramic packing.
通过包埋到硅胶(SG)中以及包埋/吸附到聚氨酯泡沫(PU)和陶瓷泡沫上,固定化了一种混合微生物培养物。在填充床反应器(PBR)、带有陶瓷泡沫的填充床反应器(PBRC)和流化床反应器(FBR)中研究了SG生物催化剂的苯酚降解性能。在连续实验中,苯酚的最大降解速率(q(s)max)按以下顺序降低:PBRC(598 mg l(-1) h(-1))> PBR(PU,471 mg l(-1)h(-1))> PBR(SG,394 mg l(-1) h(-1))> FBR(PU,161 mg l(-1) h(-1))> FBR(SG,91 mg l(-1) h(-1))。在连续苯酚降解中长时间使用SG生物催化剂导致在凝胶颗粒表面形成了一层厚度为100 - 200微米、细胞密度高的层。FBR中表面层的磨损导致该反应器配置降解性能较差。与未处理的陶瓷填料相比,用一层固定在胶体SiO2中的细胞涂覆陶瓷泡沫在PBRC运行的前3天提高了苯酚降解效率。