Suppr超能文献

结合统计形状信息的基于物理模型的非刚性配准

Physical model-based non-rigid registration incorporating statistical shape information.

作者信息

Wang Y, Staib L H

机构信息

Department of Diagnostic Radiology, Yale University, School of Medicine, New Haven, CT 06520-8042, USA.

出版信息

Med Image Anal. 2000 Mar;4(1):7-20. doi: 10.1016/s1361-8415(00)00004-9.

Abstract

This paper describes two new atlas-based methods of 2D single modality non-rigid registration using the combined power of physical and statistical shape models. The transformations are constrained to be consistent with the physical properties of deformable elastic solids in the first method and those of viscous fluids in the second, to maintain smoothness and continuity. A Bayesian formulation, based on each physical model, an intensity similarity measure, and statistical shape information embedded in corresponding boundary points, is employed to derive more accurate and robust approaches to non-rigid registration. A dense set of forces arises from the intensity similarity measure to accommodate complex anatomical details. A sparse set of forces constrains consistency with statistical shape models derived from a training set. A number of experiments were performed on both synthetic and real medical images of the brain and heart to evaluate the approaches. It is shown that statistical boundary shape information significantly augments and improves physical model-based non-rigid registration and the two methods we present each have advantages under different conditions.

摘要

本文介绍了两种基于图谱的二维单模态非刚性配准新方法,它们利用了物理形状模型和统计形状模型的联合力量。在第一种方法中,变换被约束为与可变形弹性固体的物理特性一致,在第二种方法中与粘性流体的物理特性一致,以保持平滑性和连续性。基于每个物理模型、强度相似性度量以及嵌入在相应边界点中的统计形状信息,采用贝叶斯公式来推导更准确、更稳健的非刚性配准方法。强度相似性度量产生一组密集的力,以适应复杂的解剖细节。一组稀疏的力约束与从训练集导出的统计形状模型的一致性。对大脑和心脏的合成医学图像和真实医学图像都进行了多项实验,以评估这些方法。结果表明,统计边界形状信息显著增强并改进了基于物理模型的非刚性配准,并且我们提出的两种方法在不同条件下各有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验