Suppr超能文献

非局部形状描述符:一种用于可变形多模态配准的新相似性度量。

Non-local shape descriptor: a new similarity metric for deformable multi-modal registration.

作者信息

Heinrich Mattias P, Jenkinson Mark, Bhushan Manav, Matin Tahreema, Gleeson Fergus V, Brady J Michael, Schnabel Julia A

机构信息

Institute of Biomedical Engineering, University of Oxford, UK.

出版信息

Med Image Comput Comput Assist Interv. 2011;14(Pt 2):541-8. doi: 10.1007/978-3-642-23629-7_66.

Abstract

Deformable registration of images obtained from different modalities remains a challenging task in medical image analysis. This paper addresses this problem and proposes a new similarity metric for multi-modal registration, the non-local shape descriptor. It aims to extract the shape of anatomical features in a non-local region. By utilizing the dense evaluation of shape descriptors, this new measure bridges the gap between intensity-based and geometric feature-based similarity criteria. Our new metric allows for accurate and reliable registration of clinical multi-modal datasets and is robust against the most considerable differences between modalities, such as non-functional intensity relations, different amounts of noise and non-uniform bias fields. The measure has been implemented in a non-rigid diffusion-regularized registration framework. It has been applied to synthetic test images and challenging clinical MRI and CT chest scans. Experimental results demonstrate its advantages over the most commonly used similarity metric - mutual information, and show improved alignment of anatomical landmarks.

摘要

在医学图像分析中,对从不同模态获取的图像进行可变形配准仍然是一项具有挑战性的任务。本文解决了这个问题,并提出了一种用于多模态配准的新相似性度量——非局部形状描述符。它旨在提取非局部区域中解剖特征的形状。通过利用形状描述符的密集评估,这种新度量弥合了基于强度和基于几何特征的相似性标准之间的差距。我们的新度量允许对临床多模态数据集进行准确可靠的配准,并且对模态之间最显著的差异具有鲁棒性,例如非功能强度关系、不同量的噪声和非均匀偏差场。该度量已在非刚性扩散正则化配准框架中实现。它已应用于合成测试图像以及具有挑战性的临床胸部MRI和CT扫描。实验结果证明了它相对于最常用的相似性度量——互信息的优势,并显示出解剖标志的对齐得到了改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验