Suppr超能文献

综合强度与点特征非刚性配准

Integrated Intensity and Point-Feature Nonrigid Registration.

作者信息

Papademetris Xenophon, Jackowski Andrea P, Schultz Robert T, Staib Lawrence H, Duncan James S

机构信息

Department of Biomedical Engineering, Yale University New Haven, CT 06520-8042.

出版信息

Med Image Comput Comput Assist Interv. 2001 Sep 2;3216(2004):763-770. doi: 10.1901/jaba.2001.3216-763.

Abstract

In this work, we present a method for the integration of feature and intensity information for non rigid registration. Our method is based on a free-form deformation model, and uses a normalized mutual information intensity similarity metric to match intensities and the robust point matching framework to estimate feature (point) correspondences. The intensity and feature components of the registration are posed in a single energy functional with associated weights. We compare our method to both point-based and intensity-based registrations. In particular, we evaluate registration accuracy as measured by point landmark distances and image intensity similarity on a set of seventeen normal subjects. These results suggest that the integration of intensity and point-based registration is highly effective in yielding more accurate registrations.

摘要

在这项工作中,我们提出了一种用于非刚性配准的特征与强度信息整合方法。我们的方法基于自由形式变形模型,使用归一化互信息强度相似性度量来匹配强度,并使用鲁棒点匹配框架来估计特征(点)对应关系。配准的强度和特征分量置于具有相关权重的单个能量泛函中。我们将我们的方法与基于点的配准和基于强度的配准进行比较。特别是,我们在一组17名正常受试者上,通过点地标距离和图像强度相似性来评估配准精度。这些结果表明,强度与基于点的配准整合在产生更精确的配准方面非常有效。

相似文献

1
Integrated Intensity and Point-Feature Nonrigid Registration.
Med Image Comput Comput Assist Interv. 2001 Sep 2;3216(2004):763-770. doi: 10.1901/jaba.2001.3216-763.
2
Accurate CT∕MR vessel-guided nonrigid registration of largely deformed livers.
Med Phys. 2012 May;39(5):2463-77. doi: 10.1118/1.3701779.
3
Inverse consistent non-rigid image registration based on robust point set matching.
Biomed Eng Online. 2014;13 Suppl 2(Suppl 2):S2. doi: 10.1186/1475-925X-13-S2-S2. Epub 2014 Dec 11.
4
Self-similarity weighted mutual information: a new nonrigid image registration metric.
Med Image Anal. 2014 Feb;18(2):343-58. doi: 10.1016/j.media.2013.12.003. Epub 2013 Dec 21.
6
A Robust Nonrigid Point Set Registration Method Based on Collaborative Correspondences.
Sensors (Basel). 2020 Jun 7;20(11):3248. doi: 10.3390/s20113248.
7
Feature-based groupwise registration by hierarchical anatomical correspondence detection.
Hum Brain Mapp. 2012 Feb;33(2):253-71. doi: 10.1002/hbm.21209. Epub 2011 Mar 9.
8
Estimating nonrigid motion from inconsistent intensity with robust shape features.
Med Phys. 2013 Dec;40(12):121912. doi: 10.1118/1.4829507.
9
Three-dimensional nonrigid landmark-based magnetic resonance to transrectal ultrasound registration for image-guided prostate biopsy.
J Med Imaging (Bellingham). 2015 Apr;2(2):025002. doi: 10.1117/1.JMI.2.2.025002. Epub 2015 Jun 24.
10
Robust weighted graph transformation matching for rigid and nonrigid image registration.
IEEE Trans Image Process. 2012 Oct;21(10):4369-82. doi: 10.1109/TIP.2012.2208980. Epub 2012 Jul 16.

引用本文的文献

1
Improving quantification by correcting for radiotracer clearance in tissue.
J Cereb Blood Flow Metab. 2024 Feb;44(2):296-309. doi: 10.1177/0271678X231196804. Epub 2023 Aug 17.
4
Synaptic Changes in Parkinson Disease Assessed with in vivo Imaging.
Ann Neurol. 2020 Mar;87(3):329-338. doi: 10.1002/ana.25682. Epub 2020 Feb 5.
5
M3VR-A multi-stage, multi-resolution, and multi-volumes-of-interest volume registration method applied to 3D endovaginal ultrasound.
PLoS One. 2019 Nov 21;14(11):e0224583. doi: 10.1371/journal.pone.0224583. eCollection 2019.
6
Measuring the effects of ketamine on mGluR5 using [F]FPEB and PET.
J Cereb Blood Flow Metab. 2020 Nov;40(11):2254-2264. doi: 10.1177/0271678X19886316. Epub 2019 Nov 19.
7
Assessment of a white matter reference region for C-UCB-J PET quantification.
J Cereb Blood Flow Metab. 2020 Sep;40(9):1890-1901. doi: 10.1177/0271678X19879230. Epub 2019 Sep 30.
8
Neuroanatomy Learning: Augmented Reality vs. Cross-Sections.
Anat Sci Educ. 2020 May;13(3):353-365. doi: 10.1002/ase.1912. Epub 2019 Jul 19.
10
Aspm knockout ferret reveals an evolutionary mechanism governing cerebral cortical size.
Nature. 2018 Apr;556(7701):370-375. doi: 10.1038/s41586-018-0035-0. Epub 2018 Apr 11.

本文引用的文献

1
Retrospective evaluation of intersubject brain registration.
IEEE Trans Med Imaging. 2003 Sep;22(9):1120-30. doi: 10.1109/TMI.2003.816961.
2
A unified non-rigid feature registration method for brain mapping.
Med Image Anal. 2003 Jun;7(2):113-30. doi: 10.1016/s1361-8415(02)00102-0.
3
Spatial transformation and registration of brain images using elastically deformable models.
Comput Vis Image Underst. 1997 May;66(2):207-22. doi: 10.1006/cviu.1997.0605.
4
Physical model-based non-rigid registration incorporating statistical shape information.
Med Image Anal. 2000 Mar;4(1):7-20. doi: 10.1016/s1361-8415(00)00004-9.
5
Nonrigid registration using free-form deformations: application to breast MR images.
IEEE Trans Med Imaging. 1999 Aug;18(8):712-21. doi: 10.1109/42.796284.
6
Image matching as a diffusion process: an analogy with Maxwell's demons.
Med Image Anal. 1998 Sep;2(3):243-60. doi: 10.1016/s1361-8415(98)80022-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验