Haney L N
Idaho State University, Pocatello, USA.
Aviat Space Environ Med. 2000 Sep;71(9 Suppl):A145-50.
FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) is a framework and methodology for the systematic analysis, characterization, and prediction of human error. It was developed in a NASA Advanced Concepts Project by Idaho National Engineering and Environmental Laboratory, NASA Ames Research Center, Boeing, and America West Airlines, with input from United Airlines and Idaho State University. It was hypothesized that development of a comprehensive taxonomy of error-type and contributing-influences, in a framework and methodology addressing issues important for error analysis, would result in a useful tool for human error analysis. The development method included capturing expertise of human factors and domain experts in the framework, and ensuring that the approach addressed issues important for future human error analysis. This development resulted in creation of a FRANCIE taxonomy for airline maintenance, and a FRANCIE framework and approach that addresses important issues: proactive and reactive, comprehensive error-type and contributing-influences taxonomy, meaningful error reduction strategies, multilevel analyses, multiple user types, compatible with existing methods, applied in design phase or throughout system life cycle, capture of lessons learned, and ease of application. FRANCIE was designed to apply to any domain, given taxonomy refinement. This is demonstrated by its application for an aviation operations scenario for a new precision landing aid. Representative error-types and contributing-influences, two example analyses, and a case study are presented. In conclusion, FRANCIE is useful for analysis of human error, and the taxonomy is a starting point for development of taxonomies allowing application to other domains, such as spacecraft maintenance, operations, medicine, process control, and other transportation industries.
评估错误的显著促成影响框架(FRANCIE)是一种用于系统分析、表征和预测人为错误的框架和方法。它是由爱达荷国家工程与环境实验室、美国国家航空航天局艾姆斯研究中心、波音公司和美国西部航空公司在一项美国国家航空航天局高级概念项目中开发的,联合航空公司和爱达荷州立大学也提供了相关意见。研究假设是,在一个解决错误分析重要问题的框架和方法中,开发一个全面的错误类型和促成影响分类法,将产生一个对人为错误分析有用的工具。开发方法包括在框架中捕捉人为因素和领域专家的专业知识,并确保该方法解决对未来人为错误分析重要的问题。这一开发成果是创建了一个用于航空维修的FRANCIE分类法,以及一个解决重要问题的FRANCIE框架和方法:主动和被动、全面的错误类型和促成影响分类法、有意义的错误减少策略、多层次分析、多种用户类型、与现有方法兼容、应用于设计阶段或整个系统生命周期、吸取经验教训以及易于应用。FRANCIE设计为在进行分类法细化后可应用于任何领域。这一点通过其在一种新型精密着陆辅助设备的航空运营场景中的应用得到了证明。文中介绍了代表性的错误类型和促成影响、两个示例分析以及一个案例研究。总之,FRANCIE对人为错误分析很有用,该分类法是开发可应用于其他领域(如航天器维护、运营、医学、过程控制和其他运输行业)的分类法的起点。