Suppr超能文献

微绒毛离子通道:离子通量的细胞骨架调节

Microvillar ion channels: cytoskeletal modulation of ion fluxes.

作者信息

Lange K

机构信息

Kladower Damm 25b, 14089 Berlin, Germany.

出版信息

J Theor Biol. 2000 Oct 21;206(4):561-84. doi: 10.1006/jtbi.2000.2146.

Abstract

The recently presented theory of microvillar Ca(2+)signaling [Lange, K. (1999) J. Cell. Physiol.180, 19-35], combined with Manning's theory of "condensed counterions" in linear polyelectrolytes [Manning, G. S. (1969). J. Chem. Phys.51, 924-931] and the finding of cable-like ion conductance in actin filaments [Lin, E. C. & Cantiello, H. F. (1993). Biophys. J.65, 1371-1378], allows a systematic interpretation of the role of the actin cytoskeleton in ion channel regulation. Ion conduction through actin filament bundles of microvilli exhibits unique nonlinear transmission properties some of which closely resemble that of electronic semiconductors: (1) bundles of microfilaments display significant resistance to cation conduction and (2) this resistance is decreased by supply of additional energy either as thermal, mechanical or electromagnetic field energy. Other transmission properties, however, are unique for ionic conduction in polyelectrolytes. (1) Current pulses injected into the filaments were transformed into oscillating currents or even into several discrete charge pulses closely resembling that of single-channel recordings. Discontinuous transmission is due to the existence of counterion clouds along the fixed anionic charge centers of the polymer, each acting as an "ionic capacitor". (2) The conductivity of linear polyelectrolytes strongly decreases with the charge number of the counterions; thus, Ca(2+)and Mg(2+)are effective modulator of charge transfer through linear polyelectrolytes. Field-dependent formation of divalent cation plugs on either side of the microvillar conduction line may generate the characteristic gating behavior of cation channels. (3) Mechanical movement of actin filament bundles, e.g. bending of hair cell microvilli, generates charge translocations along the filament structure (mechano-electrical coupling). (4) Energy of external fields, by inducing molecular dipoles within the polyelectrolyte matrix, can be transformed into mechanical movement of the system (electro-mechanical coupling). Because ionic transmission through linear polyelectrolytes is very slow compared with electronic conduction, only low-frequency electromagnetic fields can interact with the condensed counterion systems of linear polyelectrolytes. The delineated characteristics of microvillar ion conduction are strongly supported by the phenomenon of electro-mechanical coupling (reverse transduction) in microvilli of the audioreceptor (hair) cells and the recently reported dynamics of Ca(2+)signaling in microvilli of audio- and photoreceptor cells. Due to the cell-specific expression of different types and combinations of ion channels and transporters in the microvillar tip membrane of differentiated cells, the functional properties of this cell surface organelle are highly variable serving a multitude of different cellular functions including receptor-mediated effects such as Ca(2+)signaling, regulation of glucose and amino acid transport, as well as modulation of membrane potential. Even mechanical channel activation involved in cell volume regulation can be deduced from the systematic properties of the microvillar channel concept. In addition, the specific ion conduction properties of microfilaments combined with their proposed role in Ca(2+)signaling make microvilli the most likely cellular site for the interaction with external electric and magnetic fields.

摘要

最近提出的微绒毛钙信号理论[兰格,K.(1999年)。《细胞生理学杂志》180卷,第19 - 35页],结合曼宁关于线性聚电解质中“凝聚反离子”的理论[曼宁,G. S.(1969年)。《化学物理杂志》51卷,第924 - 931页]以及肌动蛋白丝中类似电缆状离子传导的发现[林,E. C.和坎蒂埃洛,H. F.(1993年)。《生物物理杂志》65卷,第1371 - 1378页],使得对肌动蛋白细胞骨架在离子通道调节中的作用能够进行系统的解释。通过微绒毛的肌动蛋白丝束的离子传导表现出独特的非线性传输特性,其中一些特性与电子半导体的特性非常相似:(1)微丝束对阳离子传导表现出显著的电阻,并且(2)通过提供额外的能量,如热能、机械能或电磁场能量,这种电阻会降低。然而,其他传输特性对于聚电解质中的离子传导来说是独特的。(1)注入到丝中的电流脉冲会转变为振荡电流,甚至转变为几个与单通道记录非常相似的离散电荷脉冲。不连续传输是由于沿着聚合物固定阴离子电荷中心存在反离子云,每个反离子云都充当一个“离子电容器”。(2)线性聚电解质的电导率随着反离子的电荷数强烈降低;因此,Ca(2+)和Mg(2+)是通过线性聚电解质进行电荷转移的有效调节剂。微绒毛传导线两侧场依赖的二价阳离子塞的形成可能产生阳离子通道的特征性门控行为。(3)肌动蛋白丝束的机械运动,例如毛细胞微绒毛的弯曲,会沿着丝结构产生电荷移位(机电耦合)。(4)外部场的能量通过在聚电解质基质中诱导分子偶极子,可以转变为系统的机械运动(电机械耦合)。由于与电子传导相比,通过线性聚电解质的离子传输非常缓慢,只有低频电磁场能够与线性聚电解质的凝聚反离子系统相互作用。听觉感受器(毛)细胞微绒毛中的机电耦合(反向转导)现象以及最近报道的听觉和光感受器细胞微绒毛中钙信号的动态变化,有力地支持了所描述的微绒毛离子传导特性。由于在分化细胞的微绒毛顶端膜中不同类型和组合的离子通道及转运体的细胞特异性表达,这个细胞表面细胞器具有高度可变的功能特性,服务于多种不同的细胞功能,包括受体介导的效应,如钙信号、葡萄糖和氨基酸转运的调节以及膜电位的调节。甚至参与细胞体积调节的机械通道激活也可以从微绒毛通道概念的系统特性中推导出来。此外,微丝的特定离子传导特性及其在钙信号中所提出的作用,使得微绒毛成为与外部电场和磁场相互作用最有可能的细胞部位。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验