Suppr超能文献

弱磁场的细胞靶点:沿微绒毛肌动蛋白丝的离子传导。

Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.

作者信息

Gartzke Joachim, Lange Klaus

机构信息

Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, D-10317 Berlin, Germany.

出版信息

Am J Physiol Cell Physiol. 2002 Nov;283(5):C1333-46. doi: 10.1152/ajpcell.00167.2002.

Abstract

The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals on cation transduction is amplified, whereas that of random noise is reduced.

摘要

弱电磁场(EMF)与活细胞的相互作用是一个极其重要但仍未解决的生物物理问题。对于这种相互作用,热噪声和其他类型的噪声似乎严重限制了弱信号对细胞相关成分的作用。最近提出的通过微绒毛调节离子和底物途径的一般概念为理解即使是极低磁场的生理效应提供了可能的理论基础。微绒毛中基于肌动蛋白的微丝核心被认为是磁场的细胞相互作用位点。F-肌动蛋白在Ca2+信号传导中的核心作用及其引发特定离子传导特性的聚电解质性质,使微绒毛肌动蛋白丝束成为磁场和电场的理想相互作用位点。微绒毛尖端的离子通道通过一束微丝与细胞质相连,形成一个扩散屏障系统。由于其聚电解质性质,微绒毛的微丝核心允许Ca2+通过凝聚离子云阵列的非线性电缆状阳离子传导进入细胞质。离子云与周期性施加的电磁场的相互作用以及通过F-肌动蛋白聚电解质上的势垒级联的场诱导阳离子泵浦遵循离子-磁场(MF)相互作用和信号辨别中众所周知的物理原理,如随机共振和布朗运动假说所述。所提出的相互作用机制与我们目前关于Ca2+信号传导作为MF的生物学主要靶点以及在特定幅度和频率窗口内对极低场能量相干激发的假定极端敏感性的知识一致。被脂质膜屏蔽的微绒毛F-肌动蛋白束似乎起到了增强信噪比的电子集成装置作用;相干信号对阳离子转导的影响被放大,而随机噪声的影响则被降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验