Ortiz A R, Skolnick J
Department of Molecular Biology, TPC-5, The Scripps Research Institute, La Jolla, California 92037, USA.
Biophys J. 2000 Oct;79(4):1787-99. doi: 10.1016/S0006-3495(00)76430-7.
The impact on protein evolution of the physical laws that govern folding remains obscure. Here, by analyzing in silico-evolved sequences subjected to evolutionary pressure for fast folding, it is shown that: First, a subset of residues in the thermodynamic folding nucleus is mainly responsible for modulating the protein folding rate. Second and most important, the protein topology itself is of paramount importance in determining the location of these residues in the structure. Further stabilization of the interactions in this nucleus leads to fast folding sequences. Third, these nucleation points restrict the sequence space available to the protein during evolution. Correlated mutations between positions around these hot spots arise in a statistically significant manner, and most involve contacting residues. When a similar analysis is carried out on real proteins, qualitatively similar results are obtained.
支配折叠的物理定律对蛋白质进化的影响仍不清楚。在此,通过分析在快速折叠的进化压力下计算机模拟进化的序列,结果表明:第一,热力学折叠核心中的一部分残基主要负责调节蛋白质的折叠速率。第二且最重要的是,蛋白质拓扑结构本身在确定这些残基在结构中的位置方面至关重要。该核心中相互作用的进一步稳定导致快速折叠序列。第三,这些成核点在进化过程中限制了蛋白质可利用的序列空间。这些热点周围位置之间的相关突变以具有统计学意义的方式出现,并且大多数涉及相互接触的残基。当对真实蛋白质进行类似分析时,可获得定性相似的结果。