Janshoff A, Neitzert M, Oberdörfer Y, Fuchs H
Physikalisches Institut Westfälische Wilhelms-Universität Wilhelm-Klemm-Strasse 10, 48149 Münster (Germany).
Angew Chem Int Ed Engl. 2000 Sep 15;39(18):3212-3237. doi: 10.1002/1521-3773(20000915)39:18<3212::aid-anie3212>3.0.co;2-x.
How do molecules interact with each other? What happens if a neurotransmitter binds to a ligand-operated ion channel? How do antibodies recognize their antigens? Molecular recognition events play a pivotal role in nature: in enzymatic catalysis and during the replication and transcription of the genome; it is also important for the cohesion of cellular structures and in numerous metabolic reactions that molecules interact with each other in a specific manner. Conventional methods such as calorimetry provide very precise values of binding enthalpies; these are, however, average values obtained from a large ensemble of molecules without knowledge of the dynamics of the molecular recognition event. Which forces occur when a single molecular couple meets and forms a bond? Since the development of the scanning force microscope and force spectroscopy a couple of years ago, tools have now become available for measuring the forces between interfaces with high precision-starting from colloidal forces to the interaction of single molecules. The manipulation of individual molecules using force spectroscopy is also possible. In this way, the mechanical properties on a molecular scale are measurable. The study of single molecules is not an exclusive domain of force spectroscopy; it can also be performed with a surface force apparatus, laser tweezers, or the micropipette technique. Regardless of these techniques, force spectroscopy has been proven as an extraordinary versatile tool. The intention of this review article is to present a critical evaluation of the actual development of static force spectroscopy. The article mainly focuses on experiments dealing with inter- and intramolecular forces-starting with "simple" electrostatic forces, then ligand-receptor systems, and finally the stretching of individual molecules.
分子是如何相互作用的?如果神经递质与配体门控离子通道结合会发生什么?抗体是如何识别其抗原的?分子识别事件在自然界中起着关键作用:在酶催化以及基因组的复制和转录过程中;对于细胞结构的凝聚以及许多分子以特定方式相互作用的代谢反应而言,它也很重要。量热法等传统方法能提供非常精确的结合焓值;然而,这些都是从大量分子集合中获得的平均值,并不了解分子识别事件的动力学。当单个分子对相遇并形成键时会产生哪些力?自从几年前扫描力显微镜和力谱学发展以来,现在已经有了从胶体力到单分子相互作用等高精度测量界面间力的工具。使用力谱学对单个分子进行操控也是可行的。通过这种方式,可以测量分子尺度上的力学性质。对单分子的研究并非力谱学的专属领域;也可以用表面力装置、激光镊子或微吸管技术来进行。无论采用这些技术中的哪一种,力谱学都已被证明是一种极其通用的工具。这篇综述文章的目的是对静态力谱学的实际发展进行批判性评估。文章主要关注处理分子间和分子内力的实验——从“简单”的静电力开始,然后是配体 - 受体系统,最后是单个分子的拉伸。