Department of Mechanical Engineering and Materials Science, Center for Biologically Inspired Materials and Material Systems, Duke University, Box 90300, Durham, NC 27708, USA.
Chem Soc Rev. 2012 May 7;41(9):3523-34. doi: 10.1039/c2cs15329g. Epub 2012 Feb 13.
The past years have witnessed remarkable advances in our use of atomic force microscopy (AFM) for stretching single biomolecules, thereby contributing to answering many outstanding questions in biophysics and chemical biology. In these single-molecule force spectroscopy (SMFS) experiments, the AFM tip is continuously approached to and retracted from the biological sample, while monitoring the interaction force. The obtained force-extension curves provide key insight into the molecular elasticity and localization of single molecules, either on isolated systems or on cellular surfaces. In this tutorial review, we describe the principle of such SMFS experiments, and we survey remarkable breakthroughs made in manipulating single polysaccharides and proteins, including understanding the conformational properties of sugars and controlling them by force, measuring the molecular elasticity of mechanical proteins, unfolding and refolding individual proteins, probing protein-ligand interactions, and tuning enzymatic reactions by force. In addition, we show how SMFS with AFM tips bearing specific bioligands has enabled researchers to stretch and localize single molecules on live cells, in relation with cellular functions.
过去几年,原子力显微镜(AFM)在拉伸单分子生物方面的应用取得了显著进展,有助于回答生物物理学和化学生物学领域的许多悬而未决的问题。在这些单分子力谱(SMFS)实验中,AFM 针尖不断靠近和远离生物样本,同时监测相互作用力。所获得的力-延伸曲线为单分子的分子弹性和定位提供了关键的见解,无论是在孤立系统还是在细胞表面上。在本教程综述中,我们描述了这种 SMFS 实验的原理,并调查了在操纵单多糖和蛋白质方面的显著突破,包括理解糖的构象特性并通过力控制它们,测量机械蛋白的分子弹性,展开和重折叠单个蛋白质,探测蛋白质-配体相互作用,以及通过力调节酶反应。此外,我们还展示了带有特定生物配体的 AFM 针尖的 SMFS 如何使研究人员能够在与细胞功能相关的活细胞上拉伸和定位单分子。