Suppr超能文献

Ozone, but not nitrogen dioxide, exposure decreases glutathione peroxidases in epithelial lining fluid of human lung.

作者信息

Avissar N E, Reed C K, Cox C, Frampton M W, Finkelstein J N

机构信息

Departments of Surgery, Pediatrics, Biostatistics, Medicine, and Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, New York, USA.

出版信息

Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1342-7. doi: 10.1164/ajrccm.162.4.9912041.

Abstract

Antioxidants, such as glutathione peroxidases (GPxs), in epithelial lining fluid (ELF) protect against health effects of oxidant pollutants, which includes O(3) or NO(2). We hypothesized that GPxs concentration in ELF is responsive to O(3) or NO(2) exposure. Subjects underwent two 4-h exposures to O(3) (0.22 ppm) and one to air. In another experiment, subjects underwent 3-h exposures to air and NO(2) (0.6 and 1.5 ppm). Bronchoalveolar lavage (BAL) was performed immediately or 18 h after O(3) exposure and 3.5 h after each NO(2) exposure. GPx activity and extracellular GPx (eGPx) protein concentrations were determined in ELF, and their relationships to markers of lung function, inflammation, and epithelial permeability were examined. Although the total amounts were not changed, basal (air) GPx activity (223.6 +/- 24.4 mU/ml), basal eGPx protein concentration (2.62 +/- 0.25 microg/ml), and basal ELF dilution factor (152.3 +/- 8.4) decreased 40% immediately after O(3) exposure and remained 30% decreased 18 h after exposure (p = 0.0001). No effect of NO(2) exposure on GPxs concentration was detected. There was an inverse correlation between baseline ELF eGPx protein concentration and the change in PMN 18 h after O(3) exposure (p = 0.04). Thus, O(3), a strong oxidant, decreases both GPx activity and eGPx protein in ELF, whereas NO(2), a weaker oxidant, does not. eGPx in ELF may protect against O(3)-induced airway inflammation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验