Davidovitch B, Procaccia I
Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel.
Phys Rev Lett. 2000 Oct 23;85(17):3608-11. doi: 10.1103/PhysRevLett.85.3608.
We consider a conformal theory of fractal growth patterns in two dimensions, including diffusion limited aggregation (DLA) as a particular case. In this theory the fractal dimension of the asymptotic cluster manifests itself as a dynamical exponent observable already at very early growth stages. Using a renormalization relation we show from early stage dynamics that the dimension D of DLA can be estimated, 1.69<D<1.72. We explain why traditional numerical estimates converged so slowly. We discuss similar computations for other fractal growth processes in two dimensions.
我们考虑二维分形生长模式的共形理论,其中包括扩散限制凝聚(DLA)这一特殊情况。在该理论中,渐近团簇的分形维数在非常早期的生长阶段就表现为一个可观测的动力学指数。利用重整化关系,我们从早期动力学表明,DLA的维数D可估计为1.69 < D < 1.72。我们解释了为什么传统数值估计收敛如此缓慢。我们讨论了二维中其他分形生长过程的类似计算。