Jensen Mogens H, Mathiesen Joachim, Procaccia Itamar
The Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Apr;67(4 Pt 1):042402. doi: 10.1103/PhysRevE.67.042402. Epub 2003 Apr 17.
An early (and influential) scaling relation in the multifractal theory of diffusion limited aggregation (DLA) is the Turkevich-Scher conjecture that relates the exponent alpha(min) that characterizes the "hottest" region of the harmonic measure and the fractal dimension D of the cluster, i.e., D=1+alpha(min). Due to lack of accurate direct measurements of both D and alpha(min), this conjecture could never be put to a serious test. Using the method of iterated conformal maps, D was recently determined as D=1.713+/-0.003. In this paper, we determine alpha(min) accurately with the result alpha(min)=0.665+/-0.004. We thus conclude that the Turkevich-Scher conjecture is incorrect for DLA.
扩散限制凝聚(DLA)多重分形理论中的一个早期(且有影响力的)标度关系是图尔凯维奇 - 舍尔猜想,该猜想将表征调和测度“最热”区域的指数α(min)与团簇的分形维数D联系起来,即D = 1 + α(min)。由于缺乏对D和α(min)的精确直接测量,这个猜想从未得到过严格检验。利用迭代共形映射方法,最近确定D = 1.713±0.003。在本文中,我们精确确定α(min),结果为α(min)=0.665±0.004。因此我们得出结论,对于DLA,图尔凯维奇 - 舍尔猜想是不正确的。