Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan B A
School of Microbiology and Immunology, The University of New South Wales, Australia.
Chem Biol. 2000 Oct;7(10):753-64. doi: 10.1016/s1074-5521(00)00021-1.
Blooms of toxic cyanobacteria (blue-green algae) have become increasingly common in the surface waters of the world. Of the known toxins produced by cyanobacteria, the microcystins are the most significant threat to human and animal health. These cyclic peptides are potent inhibitors of eukaryotic protein phosphatases type 1 and 2A. Synthesized nonribosomally, the microcystins contain a number of unusual amino acid residues including the beta-amino polyketide moiety Adda (3-amino-9-methoxy-2,6, 8-trimethyl-10-phenyl-4,6-decadienoic acid). We have characterized the microcystin biosynthetic gene cluster from Microcystis aeruginosa PCC7806.
A cluster spanning 55 kb, composed of 10 bidirectionally transcribed open reading frames arranged in two putative operons (mcyA-C and mcyD-J), has been correlated with microcystin formation by gene disruption and mutant analysis. Of the 48 sequential catalytic reactions involved in microcystin synthesis, 45 have been assigned to catalytic domains within six large multienzyme synthases/synthetases (McyA-E, G), which incorporate the precursors phenylacetate, malonyl-CoA, S-adenosyl-L-methionine, glutamate, serine, alanine, leucine, D-methyl-isoaspartate, and arginine. The additional four monofunctional proteins are putatively involved in O-methylation (McyJ), epimerization (McyF), dehydration (McyI), and localization (McyH). The unusual polyketide amino acid Adda is formed by transamination of a polyketide precursor as enzyme-bound intermediate, and not released during the process.
This report is the first complete description of the biosynthesis pathway of a complex cyanobacterial metabolite. The enzymatic organization of the microcystin assembly represents an integrated polyketide-peptide biosynthetic pathway with a number of unusual structural and enzymatic features. These include the integrated synthesis of a beta-amino-pentaketide precursor and the formation of beta- and gamma-carboxyl-peptide bonds, respectively. Other features of this complex system also observed in diverse related biosynthetic clusters are integrated C- and N-methyltransferases, an integrated aminotransferase, and an associated O-methyltransferase and a racemase acting on acidic amino acids.
有毒蓝藻(蓝绿藻)水华在世界地表水水域中日益常见。在已知的蓝藻产生的毒素中,微囊藻毒素对人类和动物健康构成的威胁最大。这些环肽是真核蛋白磷酸酶1型和2A型的有效抑制剂。微囊藻毒素通过非核糖体合成,含有许多不寻常的氨基酸残基,包括β-氨基聚酮部分Adda(3-氨基-9-甲氧基-2,6,8-三甲基-10-苯基-4,6-癸二烯酸)。我们已经对铜绿微囊藻PCC7806的微囊藻毒素生物合成基因簇进行了表征。
一个跨度为55 kb的基因簇,由10个双向转录的开放阅读框组成,排列在两个假定的操纵子(mcyA-C和mcyD-J)中,通过基因破坏和突变分析与微囊藻毒素的形成相关。在微囊藻毒素合成所涉及的48个连续催化反应中,45个已被指定到六个大型多酶合成酶/合成酶(McyA-E、G)中的催化结构域,这些酶将苯乙酸、丙二酰辅酶A、S-腺苷-L-甲硫氨酸、谷氨酸、丝氨酸、丙氨酸、亮氨酸、D-甲基异天冬氨酸和精氨酸等前体整合进去。另外四个单功能蛋白推测分别参与O-甲基化(McyJ)、差向异构化(McyF)、脱水(McyI)和定位(McyH)。不寻常的聚酮氨基酸Adda是由聚酮前体作为酶结合中间体进行转氨作用形成的,在此过程中不会释放出来。
本报告首次完整描述了一种复杂蓝藻代谢产物的生物合成途径。微囊藻毒素组装的酶组织代表了一种整合的聚酮-肽生物合成途径,具有许多不寻常的结构和酶学特征。这些特征包括β-氨基-戊酮前体的整合合成以及β-和γ-羧基肽键的形成。在不同相关生物合成簇中也观察到的这个复杂系统的其他特征包括整合的C-和N-甲基转移酶、一个整合的转氨酶以及一个相关的O-甲基转移酶和一个作用于酸性氨基酸的消旋酶。