Vehovszky A, Elliott C J
Department of Biology, University of York, Heslington, UK.
Acta Biol Hung. 2000;51(2-4):165-76.
In the pond snail, Lymnaea stagnalis, the paired buccal ganglia contain 3 octopamine-immunoreactive neurons, which have previously been shown to be part of the feeding network. All 3 OC cells are electrically coupled together and interact with all the known buccal feeding motoneurons, as well as with all the modulatory and central pattern generating interneurons in the buccal ganglia. N1 (protraction) phase neurons: Motoneurons firing in this phase of the feeding cycle receive either single excitatory (depolarising) synaptic inputs (B1, B6 neurons) or a biphasic response (hyperpolarisation followed by depolarisation) (B5, B7 motoneurons). Protraction phase feeding interneurons (SO, N1L, NIM) also receive this biphasic synaptic input after OC stimulation. All of protraction phase interneurons inhibit the OC neurons. N2 (retraction) phase neurons: These motoneurons (B2, B3, B9, B10) and N2 interneurons are hyperpolarised by OC stimulation. N2 interneurons have a variable (probably polysynaptic) effect on the activity of the OC neurons. N3 (swallowing) phase: OC neurons are strongly electrically coupled to both N3 phase (B4, B4cluster, B8) motoneurons and to the N3p interneurons. In case of the interneuronal connection (OC<->N3) the electrical synapse is supplemented by reciprocal chemical inhibition. However, the synaptic connections formed by the OC neurons or N3p interneurons to the other members of the feeding network are not identical. CGC: The cerebral, serotonergic CGC neurons excite the OC cells, but the OC neurons have no effect on the CGC activity. In addition to direct synaptic effects, the OC neurons also evoke long-lasting changes in the activity of feeding neurons. In a silent preparation, OC stimulation may start the feeding pattern, but when fictive feeding is already occurring, OC stimulation decreases the rate of the fictive feeding. Our results suggest that the octopaminergic OC neurons form a sub-population of N3 phase feeding interneurons, different from the previously identified N3p and N3t interneurons. The long-lasting effects of OC neurons suggest that they straddle the boundary between central pattern generator and modulatory neurons.
在池塘蜗牛椎实螺(Lymnaea stagnalis)中,成对的颊神经节包含3个章鱼胺免疫反应性神经元,这些神经元先前已被证明是摄食网络的一部分。所有3个章鱼胺能(OC)细胞相互电耦合,并与所有已知的颊部摄食运动神经元以及颊神经节中的所有调节性和中枢模式发生器中间神经元相互作用。N1(伸展)期神经元:在摄食周期的这个阶段放电的运动神经元要么接受单一兴奋性(去极化)突触输入(B1、B6神经元),要么接受双相反应(超极化后去极化)(B5、B7运动神经元)。在OC刺激后,伸展期摄食中间神经元(SO、N1L、NIM)也接受这种双相突触输入。所有伸展期中间神经元都抑制OC神经元。N2(收缩)期神经元:这些运动神经元(B2、B3、B9、B10)和N2中间神经元在OC刺激下会发生超极化。N2中间神经元对OC神经元的活动有可变的(可能是多突触的)影响。N3(吞咽)期:OC神经元与N3期(B4、B4簇、B8)运动神经元以及N3p中间神经元都有很强的电耦合。在神经元间连接(OC<->N3)的情况下,电突触由相互的化学抑制补充。然而,OC神经元或N3p中间神经元与摄食网络其他成员形成的突触连接并不相同。CGC:脑内的5-羟色胺能CGC神经元兴奋OC细胞,但OC神经元对CGC活动没有影响。除了直接的突触效应外,OC神经元还会引起摄食神经元活动的持久变化。在静止准备状态下,OC刺激可能启动摄食模式,但当虚构摄食已经发生时,OC刺激会降低虚构摄食的速率。我们的结果表明,章鱼胺能OC神经元形成了N3期摄食中间神经元的一个亚群,与先前鉴定的N3p和N3t中间神经元不同。OC神经元的持久效应表明它们跨越了中枢模式发生器和调节性神经元之间的界限。