Suppr超能文献

一种描述一氧化氮合酶催化作用和调节机制的动力学模拟模型。

A kinetic simulation model that describes catalysis and regulation in nitric-oxide synthase.

作者信息

Santolini J, Adak S, Curran C M, Stuehr D J

机构信息

Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.

出版信息

J Biol Chem. 2001 Jan 12;276(2):1233-43. doi: 10.1074/jbc.M006858200.

Abstract

After initiating NO synthesis a majority of neuronal NO synthase (nNOS) quickly partitions into a ferrous heme-NO complex. This down-regulates activity and increases enzyme K(m,O(2)). To understand this process, we developed a 10-step kinetic model in which the ferric heme-NO enzyme forms as the immediate product of catalysis, and then partitions between NO dissociation versus reduction to a ferrous heme-NO complex. Rate constants used for the model were derived from recent literature or were determined here. Computer simulations of the model precisely described both pre-steady and steady-state features of nNOS catalysis, including NADPH consumption and NO production, buildup of a heme-NO complex, changes between pre-steady and steady-state rates, and the change in enzyme K(m,O(2)) in the presence or absence of NO synthesis. The model also correctly simulated the catalytic features of nNOS mutants W409F and W409Y, which are hyperactive and display less heme-NO complex formation in the steady state. Model simulations showed how the rate of heme reduction influences several features of nNOS catalysis, including populations of NO-bound versus NO-free enzyme in the steady state and the rate of NO synthesis. The simulation predicts that there is an optimum rate of heme reduction that is close to the measured rate in nNOS. Ratio between NADPH consumption and NO synthesis is also predicted to increase with faster heme reduction. Our kinetic model is an accurate and versatile tool for understanding catalytic behavior and will provide new perspectives on NOS regulation.

摘要

在启动一氧化氮(NO)合成后,大多数神经元型一氧化氮合酶(nNOS)会迅速分配到亚铁血红素-NO复合物中。这会下调活性并增加酶的米氏常数K(m,O(2))。为了理解这一过程,我们开发了一个包含10个步骤的动力学模型,其中铁血红素-NO酶作为催化的直接产物形成,然后在NO解离与还原为亚铁血红素-NO复合物之间进行分配。该模型使用的速率常数来自近期文献或在此处测定。该模型的计算机模拟精确描述了nNOS催化的预稳态和稳态特征,包括NADPH消耗和NO产生、血红素-NO复合物的积累、预稳态和稳态速率之间的变化,以及在有无NO合成情况下酶的K(m,O(2))变化。该模型还正确模拟了nNOS突变体W409F和W409Y的催化特征,这些突变体活性过高,在稳态下血红素-NO复合物形成较少。模型模拟显示了血红素还原速率如何影响nNOS催化的几个特征,包括稳态下结合NO与未结合NO的酶的比例以及NO合成速率。模拟预测存在一个接近nNOS中测量速率的最佳血红素还原速率。还预测NADPH消耗与NO合成之间的比率会随着血红素还原速度加快而增加。我们的动力学模型是理解催化行为的准确且通用的工具,将为一氧化氮合酶(NOS)的调节提供新的视角。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验