Suppr超能文献

内皮型一氧化氮合酶中的电子转移、氧结合及一氧化氮反馈抑制

Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase.

作者信息

Abu-Soud H M, Ichimori K, Presta A, Stuehr D J

机构信息

Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.

出版信息

J Biol Chem. 2000 Jun 9;275(23):17349-57. doi: 10.1074/jbc.M000050200.

Abstract

We studied steps that make up the initial and steady-state phases of nitric oxide (NO) synthesis to understand how activity of bovine endothelial NO synthase (eNOS) is regulated. Stopped-flow analysis of NADPH-dependent flavin reduction showed the rate increased from 0. 13 to 86 s(-1) upon calmodulin binding, but this supported slow heme reduction in the presence of either Arg or N(omega)-hydroxy-l-arginine (0.005 and 0.014 s(-1), respectively, at 10 degrees C). O(2) binding to ferrous eNOS generated a transient ferrous dioxy species (Soret peak at 427 nm) whose formation and decay kinetics indicate it can participate in NO synthesis. The kinetics of heme-NO complex formation were characterized under anaerobic conditions and during the initial phase of NO synthesis. During catalysis heme-NO complex formation required buildup of relatively high solution NO concentrations (>50 nm), which were easily achieved with N(omega)-hydroxy-l-arginine but not with Arg as substrate. Heme-NO complex formation caused eNOS NADPH oxidation and citrulline synthesis to decrease 3-fold and the apparent K(m) for O(2) to increase 6-fold. Our main conclusions are: 1) The slow steady-state rate of NO synthesis by eNOS is primarily because of slow electron transfer from its reductase domain to the heme, rather than heme-NO complex formation or other aspects of catalysis. 2) eNOS forms relatively little heme-NO complex during NO synthesis from Arg, implying NO feedback inhibition has a minimal role. These properties distinguish eNOS from the other NOS isoforms and provide a foundation to better understand its role in physiology and pathology.

摘要

我们研究了构成一氧化氮(NO)合成初始阶段和稳态阶段的步骤,以了解牛内皮型一氧化氮合酶(eNOS)的活性是如何被调节的。对NADPH依赖性黄素还原的停流分析表明,钙调蛋白结合后速率从0.13增加到86 s⁻¹,但这支持在存在精氨酸或N⁻羟基-L-精氨酸的情况下血红素缓慢还原(在10℃时分别为0.005和0.014 s⁻¹)。氧气与亚铁eNOS结合产生一个瞬态亚铁双氧物种(427 nm处的Soret峰),其形成和衰减动力学表明它可以参与NO合成。在厌氧条件下和NO合成的初始阶段对血红素-NO复合物形成的动力学进行了表征。在催化过程中,血红素-NO复合物的形成需要积累相对较高的溶液NO浓度(>50 nM),使用N⁻羟基-L-精氨酸很容易实现,但以精氨酸作为底物则不行。血红素-NO复合物的形成导致eNOS的NADPH氧化和瓜氨酸合成减少3倍,而氧气的表观Km增加6倍。我们的主要结论是:1)eNOS合成NO的缓慢稳态速率主要是由于从其还原酶结构域到血红素的电子转移缓慢,而不是血红素-NO复合物的形成或催化的其他方面。2)在由精氨酸合成NO的过程中,eNOS形成的血红素-NO复合物相对较少,这意味着NO反馈抑制的作用最小。这些特性将eNOS与其他NOS同工型区分开来,并为更好地理解其在生理和病理中的作用提供了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验