Suppr超能文献

细菌膜泡的转运研究

Transport studies in bacterial membrane vesicles.

作者信息

Kaback H R

出版信息

Science. 1974 Dec 6;186(4167):882-92. doi: 10.1126/science.186.4167.882.

Abstract

The use of bacterial membrane vesicles as an experimental system for the study of active transport has been discussed. Vesicles are prepared from osmotically sensitized bacteria, and consist of osmotically intact, membranebound sacs without internal structure. They retain litle or no cytoplasm. Under appropriate conditions, these vesicles catalyze the transport of a variety of solutes at rates which are comparable, in many cases, to those of intact cells. Two general types of transport systems have been elucidated in the vesicle system: (i) group translocation systems which catalyze vectorial covalent reactions; and (ii) respirationlinked transport systems that catalyze the active transport of a whole range of metabolites against an electrochemical or osmotic gradient. In E. coli membrane vesicles, the respiration-linked transport systems are coupled primarily to the oxidation of (D)-lactate to pyruvate, catalyzed by a flavin-linked, membrane-bound (D)-lactate dehydrogenase which has been purified to homogeneity. Electrons derived from (D)-lactate or certain artificial electron donors are transferred to oxygen by means of a membrane-bound respiratory chain, and respiration is coupled to active transport within a segment of the respiratory chain between the primary dehydrogenase and cytochrome. b(l). The great majority of the individual membrane vesicles in the population catalyze active transport, and the generation or hydtolysis of ATP is not involved. Under anaerobic conditions, fumarate or nitrate can be utilized in place of oxygen as terminal electron acceptors. With the exception that (D)-lactate is not always the most effective electron donor for active transport, vesicles prepared from a number of other organisms catalyze transport in a similar manner. Fluorescent dansylgalactosides are useful molecular probes of active transport in the vesicle system. These compounds are competitive inhibitors of beta-galactoside transport, but are not transported themselves. Fluorescence studies indicate that the lac carrier protein constitutes approximately 3 to 6 percent of the total membrane protein, and that it is not accessible to the external medium unless the membrane is "energized." Thus, energy is coupled to one of the initial steps in the transport process. Studies with a photoaffinity-labeled galactoside provide independent support for this conclusion. When membrane vesicles prepared from a (D)-lactate dehydrogenase mutant of E. coli are treated with (D)-lactate dehydrogenase, the enzyme binds to the vesicles and they regain the capacity to catalyze (D)-lactate oxidation and (D)-lactate-dependent active transport. The maximal specific transport activity obtained in the reconstituted system is similar in magnitude to that of wildtype vesicles. Titration studies with dansylgalactoside demonstrate that there is at least a seven- to eightfold excess of lac carrier protein relative to (D)-lactate dehydrogenase. Evidence is presented indicating that the enzyme is bound to the inner surface of native membrane vesicles and to the outer surface of reconstituted vesicles, and that the flavin coenzyme moiety is critically involved in binding. Possible mechanisms of respirationlinked active transport are discussed.

摘要

已经讨论了使用细菌膜泡作为研究主动运输的实验系统。膜泡由经渗透压敏感处理的细菌制备而成,由渗透压完整、膜结合的囊泡组成,没有内部结构。它们几乎没有或没有保留细胞质。在适当条件下,这些膜泡能催化多种溶质的运输,在许多情况下,运输速率与完整细胞相当。在膜泡系统中已阐明了两种一般类型的运输系统:(i)催化向量共价反应的基团转位系统;(ii)催化一系列代谢物逆电化学或渗透压梯度进行主动运输的呼吸链偶联运输系统。在大肠杆菌膜泡中,呼吸链偶联运输系统主要与(D)-乳酸氧化为丙酮酸相偶联,这一过程由一种与黄素相连、膜结合的(D)-乳酸脱氢酶催化,该酶已被纯化至同质。源自(D)-乳酸或某些人工电子供体的电子通过膜结合呼吸链传递给氧气,呼吸作用与初级脱氢酶和细胞色素b(l)之间呼吸链某一区段内的主动运输相偶联。群体中绝大多数单个膜泡都能催化主动运输,且不涉及ATP的生成或水解。在厌氧条件下,富马酸盐或硝酸盐可作为末端电子受体替代氧气。除了(D)-乳酸并非总是主动运输最有效的电子供体外,从许多其他生物体制备的膜泡以类似方式催化运输。荧光丹磺酰半乳糖苷是膜泡系统中主动运输的有用分子探针。这些化合物是β-半乳糖苷运输的竞争性抑制剂,但它们自身不被运输。荧光研究表明,乳糖载体蛋白约占总膜蛋白的3%至6%,并且除非膜被“激活”,否则它不能与外部介质接触。因此,能量与运输过程的初始步骤之一相偶联。用光亲和标记的半乳糖苷进行的研究为这一结论提供了独立支持。当用(D)-乳酸脱氢酶处理从大肠杆菌的(D)-乳酸脱氢酶突变体制备的膜泡时,该酶与膜泡结合,膜泡恢复催化(D)-乳酸氧化和(D)-乳酸依赖性主动运输的能力。在重组系统中获得的最大比运输活性在大小上与野生型膜泡相似。用丹磺酰半乳糖苷进行的滴定研究表明,相对于(D)-乳酸脱氢酶,乳糖载体蛋白至少有七至八倍的过量。有证据表明该酶与天然膜泡的内表面和重组膜泡的外表面结合,并且黄素辅酶部分在结合中起关键作用。文中讨论了呼吸链偶联主动运输的可能机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验