Patton B L
Center for Research on Occupational and Environmental Toxicology, Oregon Health Sciences University, Portland, Oregon 97201, USA.
Microsc Res Tech. 2000 Nov 1;51(3):247-61. doi: 10.1002/1097-0029(20001101)51:3<247::AID-JEMT5>3.0.CO;2-Z.
The mammalian neuromuscular system expresses seven laminin genes (alpha 1, alpha 2, alpha 4, alpha 5, beta 1, beta 2, and gamma 1), produces seven isoforms of the laminin trimer (laminins 1, 2, 4, 8, 9, 10, and 11), and distributes these trimers to at least seven distinct basal laminae (perineurial, endoneurial, terminal Schwann cell, myotendinous junction, synaptic cleft, synaptic fold, and extrajunctional muscle). The patterns of expression, assembly, and distribution are regulated during development, and primary and secondary changes in laminin expression occur in several neuromuscular genetic disorders. Functional studies using knockout and transgenic mice, and purified laminins and cell types, demonstrate that laminins are required components of basal laminae in the neuromuscular system. Collectively, laminins have both structural and signaling functions; individually, laminin isoforms have unique roles in regulating the behavior of nerve, muscle, and Schwann cell. Among them, laminin-2 (alpha 2 beta 1 gamma 1) plays an important structural role in supporting the muscle plasma membrane, laminin-4 regulates adhesion and differentiation of the myotendinous junction, and laminin-11 regulates nerve terminal differentiation and Schwann cell motility. Together, these observations reveal remarkable diversity in the formation and function of laminins and basal laminae, and suggest avenues for addressing some neuromuscular diseases.
哺乳动物的神经肌肉系统表达七种层粘连蛋白基因(α1、α2、α4、α5、β1、β2和γ1),产生七种层粘连蛋白三聚体异构体(层粘连蛋白1、2、4、8、9、10和11),并将这些三聚体分布到至少七种不同的基底膜(神经束膜、神经内膜、终末施万细胞、肌腱连接、突触间隙、突触褶皱和接头外肌肉)。在发育过程中,层粘连蛋白的表达、组装和分布模式受到调控,并且在几种神经肌肉遗传性疾病中会发生层粘连蛋白表达的原发性和继发性变化。使用基因敲除和转基因小鼠以及纯化的层粘连蛋白和细胞类型进行的功能研究表明,层粘连蛋白是神经肌肉系统基底膜的必需成分。总的来说,层粘连蛋白具有结构和信号传导功能;单独来看,层粘连蛋白异构体在调节神经、肌肉和施万细胞的行为方面具有独特作用。其中,层粘连蛋白-2(α2β1γ1)在支持肌细胞膜方面发挥重要的结构作用,层粘连蛋白-4调节肌腱连接的黏附和分化,层粘连蛋白-11调节神经末梢分化和施万细胞运动。这些观察结果共同揭示了层粘连蛋白和基底膜在形成和功能上的显著多样性,并为解决一些神经肌肉疾病提供了途径。