Suppr超能文献

针对果蝇中Ras依赖性粗糙眼表型的激酶抑制因子修饰因子的遗传筛选。

A genetic screen for modifiers of a kinase suppressor of Ras-dependent rough eye phenotype in Drosophila.

作者信息

Therrien M, Morrison D K, Wong A M, Rubin G M

机构信息

Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200, USA.

出版信息

Genetics. 2000 Nov;156(3):1231-42. doi: 10.1093/genetics/156.3.1231.

Abstract

kinase suppressor of Ras (ksr) encodes a putative protein kinase that by genetic criteria appears to function downstream of RAS in multiple receptor tyrosine kinase (RTK) pathways. While biochemical evidence suggests that the role of KSR is closely linked to the signal transduction mechanism of the MAPK cascade, the precise molecular function of KSR remains unresolved. To further elucidate the role of KSR and to identify proteins that may be required for KSR function, we conducted a dominant modifier screen in Drosophila based on a KSR-dependent phenotype. Overexpression of the KSR kinase domain in a subset of cells during Drosophila eye development blocks photoreceptor cell differentiation and results in the external roughening of the adult eye. Therefore, mutations in genes functioning with KSR might modify the KSR-dependent phenotype. We screened approximately 185,000 mutagenized progeny for dominant modifiers of the KSR-dependent rough eye phenotype. A total of 15 complementation groups of Enhancers and four complementation groups of Suppressors were derived. Ten of these complementation groups correspond to mutations in known components of the Ras1 pathway, demonstrating the ability of the screen to specifically identify loci critical for Ras1 signaling and further confirming a role for KSR in Ras1 signaling. In addition, we have identified 4 additional complementation groups. One of them corresponds to the kismet locus, which encodes a putative chromatin remodeling factor. The relevance of these loci with respect to the function of KSR and the Ras1 pathway in general is discussed.

摘要

Ras激酶抑制因子(ksr)编码一种假定的蛋白激酶,根据遗传学标准,它似乎在多个受体酪氨酸激酶(RTK)途径中发挥作用于RAS的下游。虽然生化证据表明KSR的作用与MAPK级联的信号转导机制密切相关,但KSR的确切分子功能仍未明确。为了进一步阐明KSR的作用并鉴定可能是KSR功能所必需的蛋白质,我们基于KSR依赖的表型在果蝇中进行了显性修饰因子筛选。在果蝇眼睛发育过程中,KSR激酶结构域在一部分细胞中的过表达会阻断光感受器细胞的分化,并导致成年果蝇眼睛外部粗糙。因此,与KSR共同发挥作用的基因中的突变可能会改变KSR依赖的表型。我们筛选了大约185,000个诱变后代,以寻找KSR依赖的粗糙眼表型的显性修饰因子。总共获得了15个增强子互补群和4个抑制子互补群。其中10个互补群对应于Ras1途径已知成分中的突变,证明了该筛选能够特异性地鉴定对Ras1信号传导至关重要的基因座,并进一步证实了KSR在Ras1信号传导中的作用。此外,我们还鉴定出了另外4个互补群。其中一个对应于kismet基因座,它编码一种假定的染色质重塑因子。本文讨论了这些基因座与KSR功能以及一般Ras1途径之间的相关性。

相似文献

3
A screen for genes that function downstream of Ras1 during Drosophila eye development.
Genetics. 1996 May;143(1):315-29. doi: 10.1093/genetics/143.1.315.
4
KSR, a novel protein kinase required for RAS signal transduction.
Cell. 1995 Dec 15;83(6):879-88. doi: 10.1016/0092-8674(95)90204-x.
5
CNK, a RAF-binding multidomain protein required for RAS signaling.
Cell. 1998 Oct 30;95(3):343-53. doi: 10.1016/s0092-8674(00)81766-3.
7
14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila.
Genes Dev. 1997 May 1;11(9):1132-9. doi: 10.1101/gad.11.9.1132.
9
Kinase suppressor of Ras forms a multiprotein signaling complex and modulates MEK localization.
Mol Cell Biol. 1999 Aug;19(8):5523-34. doi: 10.1128/MCB.19.8.5523.
10
The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans.
Cell. 1995 Dec 15;83(6):903-13. doi: 10.1016/0092-8674(95)90206-6.

引用本文的文献

1
SPOC domain proteins in health and disease.
Genes Dev. 2023 Mar 1;37(5-6):140-170. doi: 10.1101/gad.350314.122. Epub 2023 Mar 16.
2
Predicting and explaining the impact of genetic disruptions and interactions on organismal viability.
Bioinformatics. 2022 Sep 2;38(17):4088-4099. doi: 10.1093/bioinformatics/btac519.
3
Exploiting codon usage identifies intensity-specific modifiers of Ras/MAPK signaling in vivo.
PLoS Genet. 2020 Dec 9;16(12):e1009228. doi: 10.1371/journal.pgen.1009228. eCollection 2020 Dec.
5
Functional Genomics of the Retina to Elucidate its Construction and Deconstruction.
Int J Mol Sci. 2019 Oct 4;20(19):4922. doi: 10.3390/ijms20194922.
6
Spen limits intestinal stem cell self-renewal.
PLoS Genet. 2018 Nov 19;14(11):e1007773. doi: 10.1371/journal.pgen.1007773. eCollection 2018 Nov.
7
ScaPD: a database for human scaffold proteins.
BMC Bioinformatics. 2017 Oct 3;18(Suppl 11):386. doi: 10.1186/s12859-017-1806-6.
8
Polycomb and Trithorax Group Genes in .
Genetics. 2017 Aug;206(4):1699-1725. doi: 10.1534/genetics.115.185116.
10
Kismet positively regulates glutamate receptor localization and synaptic transmission at the Drosophila neuromuscular junction.
PLoS One. 2014 Nov 20;9(11):e113494. doi: 10.1371/journal.pone.0113494. eCollection 2014.

本文引用的文献

1
Neuronal differentiation in Drosophila ommatidium.
Dev Biol. 1987 Apr;120(2):366-76. doi: 10.1016/0012-1606(87)90239-9.
3
Functional analysis of CNK in RAS signaling.
Proc Natl Acad Sci U S A. 1999 Nov 9;96(23):13259-63. doi: 10.1073/pnas.96.23.13259.
5
ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job.
J Mol Biol. 1999 Oct 22;293(2):187-98. doi: 10.1006/jmbi.1999.2999.
6
A genetic screen for modifiers of E2F in Drosophila melanogaster.
Genetics. 1999 Sep;153(1):275-87. doi: 10.1093/genetics/153.1.275.
7
Drosophila Src42A is a negative regulator of RTK signaling.
Dev Biol. 1999 Apr 1;208(1):233-43. doi: 10.1006/dbio.1999.9196.
10
A screen for mutations that prevent lethality caused by expression of activated sevenless and Ras1 in the Drosophila embryo.
Dev Genet. 1998;23(4):347-61. doi: 10.1002/(SICI)1520-6408(1998)23:4<347::AID-DVG9>3.0.CO;2-C.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验