Iyer Janani, Wang Qingyu, Le Thanh, Pizzo Lucilla, Grönke Sebastian, Ambegaokar Surendra S, Imai Yuzuru, Srivastava Ashutosh, Troisí Beatriz Llamusí, Mardon Graeme, Artero Ruben, Jackson George R, Isaacs Adrian M, Partridge Linda, Lu Bingwei, Kumar Justin P, Girirajan Santhosh
Department of Biochemistry and Molecular Biology, The Pennsylvania State University, Pennsylvania 16802.
Bioinformatics and Genomics Program, The Huck Institutes of of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802.
G3 (Bethesda). 2016 May 3;6(5):1427-37. doi: 10.1534/g3.116.027060.
About two-thirds of the vital genes in the Drosophila genome are involved in eye development, making the fly eye an excellent genetic system to study cellular function and development, neurodevelopment/degeneration, and complex diseases such as cancer and diabetes. We developed a novel computational method, implemented as Flynotyper software (http://flynotyper.sourceforge.net), to quantitatively assess the morphological defects in the Drosophila eye resulting from genetic alterations affecting basic cellular and developmental processes. Flynotyper utilizes a series of image processing operations to automatically detect the fly eye and the individual ommatidium, and calculates a phenotypic score as a measure of the disorderliness of ommatidial arrangement in the fly eye. As a proof of principle, we tested our method by analyzing the defects due to eye-specific knockdown of Drosophila orthologs of 12 neurodevelopmental genes to accurately document differential sensitivities of these genes to dosage alteration. We also evaluated eye images from six independent studies assessing the effect of overexpression of repeats, candidates from peptide library screens, and modifiers of neurotoxicity and developmental processes on eye morphology, and show strong concordance with the original assessment. We further demonstrate the utility of this method by analyzing 16 modifiers of sine oculis obtained from two genome-wide deficiency screens of Drosophila and accurately quantifying the effect of its enhancers and suppressors during eye development. Our method will complement existing assays for eye phenotypes, and increase the accuracy of studies that use fly eyes for functional evaluation of genes and genetic interactions.
果蝇基因组中约三分之二的重要基因参与眼睛发育,这使得果蝇眼睛成为研究细胞功能与发育、神经发育/退化以及癌症和糖尿病等复杂疾病的优秀遗传系统。我们开发了一种新颖的计算方法,并将其实现为Flynotyper软件(http://flynotyper.sourceforge.net),用于定量评估果蝇眼睛因影响基本细胞和发育过程的基因改变而产生的形态缺陷。Flynotyper利用一系列图像处理操作自动检测果蝇眼睛和单个小眼,并计算一个表型评分,作为衡量果蝇眼睛中小眼排列无序程度的指标。作为原理验证,我们通过分析果蝇12个神经发育基因的直系同源基因在眼睛特异性敲低时产生的缺陷来测试我们的方法,以准确记录这些基因对剂量改变的不同敏感性。我们还评估了来自六项独立研究的眼睛图像,这些研究评估了重复序列过表达、肽库筛选候选物以及神经毒性和发育过程调节剂对眼睛形态的影响,并显示出与原始评估的高度一致性。我们通过分析从果蝇的两次全基因组缺失筛选中获得的16个无眼修饰基因,并准确量化其增强子和抑制子在眼睛发育过程中的作用,进一步证明了该方法的实用性。我们的方法将补充现有的眼睛表型检测方法,并提高利用果蝇眼睛进行基因功能评估和遗传相互作用研究的准确性。