Suppr超能文献

n型胶体半导体纳米晶体

n-type colloidal semiconductor nanocrystals.

作者信息

Shim M, Guyot-Sionnest P

机构信息

James Franck Institute, University of Chicago, Illinois 60637, USA.

出版信息

Nature. 2000 Oct 26;407(6807):981-3. doi: 10.1038/35039577.

Abstract

Colloidal semiconductor nanocrystals combine the physical and chemical properties of molecules with the optoelectronic properties of semiconductors. Their colour is highly controllable, a direct consequence of quantum confinement on the electronic states. Such nanocrystals are a form of 'artificial atoms' (ref. 4) that may find applications in optoelectronic systems such as light-emitting diodes and photovoltaic cells, or as components of future nanoelectronic devices. The ability to control the electron occupation (especially in n-type or p-type nanocrystals) is important for tailoring the electrical and optical properties, and should lead to a wider range of practical devices. But conventional doping by introducing impurity atoms has been unsuccessful so far: impurities tend to be expelled from the small crystalline cores (as observed for magnetic impurities), and thermal ionization of the impurities (which provides free carriers) is hindered by strong confinement. Here we report the fabrication of n-type nanocrystals using an electron transfer approach commonly employed in the field of conducting organic polymers. We find that semiconductor nanocrystals prepared as colloids can be made n-type, with electrons in quantum confined states.

摘要

胶体半导体纳米晶体将分子的物理和化学性质与半导体的光电性质结合在一起。它们的颜色具有高度可控性,这是量子限制对电子态产生的直接结果。这类纳米晶体是“人造原子”的一种形式(参考文献4),可能在诸如发光二极管和光伏电池等光电器件系统中得到应用,或者作为未来纳米电子器件的组件。控制电子占据情况(特别是在n型或p型纳米晶体中)的能力对于定制电学和光学性质至关重要,并且有望带来更广泛的实用器件。但是,到目前为止,通过引入杂质原子进行常规掺杂尚未成功:杂质往往会从小的晶体核中被排挤出去(就像磁性杂质的情况那样),而且杂质的热电离(它提供自由载流子)受到强限制的阻碍。在此,我们报告了使用导电有机聚合物领域常用的电子转移方法制备n型纳米晶体的过程。我们发现,制备成胶体的半导体纳米晶体可以制成n型,其中电子处于量子限制态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验