Suppr超能文献

寻找哺乳动物线粒体tRNA的特征性结构特征。

Search for characteristic structural features of mammalian mitochondrial tRNAs.

作者信息

Helm M, Brulé H, Friede D, Giegé R, Pütz D, Florentz C

机构信息

Unité Propre de Recherche 9002 du Centre National de la Recherche Scientifique, Département Mécanismes et Macromolécules de la Synthèse Protéique, et Cristallogenèse, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.

出版信息

RNA. 2000 Oct;6(10):1356-79. doi: 10.1017/s1355838200001047.

Abstract

A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.

摘要

许多线粒体(mt)tRNA在结构上与经典的tRNA三叶草二级结构以及传统的L形三级结构存在很大差异。因此,人们普遍倾向于将所有线粒体tRNA视为“怪异”的tRNA。在此,我们对31个全序列哺乳动物线粒体基因组中的22个tRNA基因进行了大规模序列比较,以确定这一特定tRNA群体的结构特征。纵向比对确定了一级序列和二级结构的保守/可变程度,并在22个家族中的每一个家族内寻找潜在的三级相互作用。进一步的横向比对确定,除了丝氨酸特异性tRNA外,哺乳动物线粒体tRNA确实折叠成具有大多经典特征的三叶草结构。然而,差异仍然存在,涉及D环和T环大小的巨大变化。这些环中分别主要缺失保守核苷酸G18G19和T54T55C56,这表明两个结构域之间的经典三级相互作用并未发生。根据tRNA序列的基因组来源(富含G或贫G的DNA链)进行分类,突出了一些特定特征,例如茎中错配或G-T对的丰富/贫乏,以及D环和T环中极低的G含量或C含量。由此产生的22个“典型”哺乳动物线粒体序列为实验性结构和功能研究奠定了系统发育基础。此外,它们有望帮助评估在人类线粒体tRNA基因中检测到的与疾病相关的点突变可能产生的影响。

相似文献

1
Search for characteristic structural features of mammalian mitochondrial tRNAs.
RNA. 2000 Oct;6(10):1356-79. doi: 10.1017/s1355838200001047.
3
Tertiary network in mammalian mitochondrial tRNAAsp revealed by solution probing and phylogeny.
Nucleic Acids Res. 2009 Nov;37(20):6881-95. doi: 10.1093/nar/gkp697. Epub 2009 Sep 18.
6
Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures.
RNA. 2007 Aug;13(8):1184-90. doi: 10.1261/rna.588407. Epub 2007 Jun 21.
7
Loss of a primordial identity element for a mammalian mitochondrial aminoacylation system.
J Biol Chem. 2006 Jun 9;281(23):15980-6. doi: 10.1074/jbc.M511633200. Epub 2006 Apr 5.
9
Amber suppression in Escherichia coli by unusual mitochondria-like transfer RNAs.
Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1375-80. doi: 10.1073/pnas.95.4.1375.
10
Nuclear control of cloverleaf structure of human mitochondrial tRNA(Lys).
J Mol Biol. 2004 Mar 26;337(3):545-60. doi: 10.1016/j.jmb.2004.01.036.

引用本文的文献

1
An alternative adaptation strategy of the CCA-adding enzyme to accept noncanonical tRNA substrates in Ascaris suum.
J Biol Chem. 2025 Apr;301(4):108414. doi: 10.1016/j.jbc.2025.108414. Epub 2025 Mar 17.
3
Molecular basis of human nuclear and mitochondrial tRNA 3' processing.
Nat Struct Mol Biol. 2025 Apr;32(4):613-624. doi: 10.1038/s41594-024-01445-w. Epub 2025 Jan 2.
4
Structural basis of 3'-tRNA maturation by the human mitochondrial RNase Z complex.
EMBO J. 2024 Dec;43(24):6573-6590. doi: 10.1038/s44318-024-00297-w. Epub 2024 Nov 8.
5
Aberrant Mitochondrial tRNA Genes Appear Frequently in Animal Evolution.
Genome Biol Evol. 2024 Nov 1;16(11). doi: 10.1093/gbe/evae232.
7
Quantifying constraint in the human mitochondrial genome.
Nature. 2024 Nov;635(8038):390-397. doi: 10.1038/s41586-024-08048-x. Epub 2024 Oct 16.
8
Mitochondrial ribosome biogenesis and redox sensing.
FEBS Open Bio. 2024 Oct;14(10):1640-1655. doi: 10.1002/2211-5463.13844. Epub 2024 Jun 7.
10
Maternally Inherited Essential Hypertension May Be Associated with the Mutations in Mitochondrial tRNA Gene.
Pharmgenomics Pers Med. 2024 Jan 9;17:13-26. doi: 10.2147/PGPM.S436235. eCollection 2024.

本文引用的文献

2
Expression and characterization of the human mitochondrial leucyl-tRNA synthetase.
Biochim Biophys Acta. 2000 Feb 29;1490(3):245-58. doi: 10.1016/s0167-4781(99)00240-7.
4
Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase.
J Mol Biol. 1999 May 14;288(4):567-77. doi: 10.1006/jmbi.1999.2708.
5
Animal mitochondrial genomes.
Nucleic Acids Res. 1999 Apr 15;27(8):1767-80. doi: 10.1093/nar/27.8.1767.
6
Nucleotide substitution rate of mammalian mitochondrial genomes.
J Mol Evol. 1999 Apr;48(4):427-34. doi: 10.1007/pl00006487.
7
Mitochondrial diseases in man and mouse.
Science. 1999 Mar 5;283(5407):1482-8. doi: 10.1126/science.283.5407.1482.
8
The EMBL Nucleotide Sequence Database.
Nucleic Acids Res. 1999 Jan 1;27(1):18-24. doi: 10.1093/nar/27.1.18.
9
Processing and editing of overlapping tRNAs in human mitochondria.
J Biol Chem. 1998 Nov 27;273(48):31977-84. doi: 10.1074/jbc.273.48.31977.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验