Suppr超能文献

使用人工神经网络对心力衰竭进行风险分层。

Risk stratification in heart failure using artificial neural networks.

作者信息

Atienza F, Martinez-Alzamora N, De Velasco J A, Dreiseitl S, Ohno-Machado L

机构信息

Cardiology Department, University General Hospital, Valencia, Spain.

出版信息

Proc AMIA Symp. 2000:32-6.

Abstract

Accurate risk stratification of heart failure patients is critical to improve management and outcomes. Heart failure is a complex multisystem disease in which several predictors are categorical. Neural network models have successfully been applied to several medical classification problems. Using a simple neural network, we assessed one-year prognosis in 132 patients, consecutively admitted with heart failure, by classifying them in 3 groups: death, readmission and one-year event-free survival. Given the small number of cases, the neural network model was trained using a resampling method. We identified relevant predictors using the Automatic Relevance Determination (ARD) method, and estimated their mean effect on the 3 different outcomes. Only 9 individuals were misclassified. Neural networks have the potential to be a useful tool for making prognosis in the domain of heart failure.

摘要

准确对心力衰竭患者进行风险分层对于改善管理和预后至关重要。心力衰竭是一种复杂的多系统疾病,其中有几个预测因素是分类变量。神经网络模型已成功应用于多个医学分类问题。我们使用一个简单的神经网络,通过将132例连续入院的心力衰竭患者分为三组:死亡、再入院和一年无事件生存,来评估他们的一年预后。鉴于病例数较少,神经网络模型采用重采样方法进行训练。我们使用自动相关性确定(ARD)方法识别相关预测因素,并估计它们对三种不同结局的平均影响。只有9例被错误分类。神经网络有可能成为心力衰竭领域进行预后评估的有用工具。

相似文献

2
One-year mortality prognosis in heart failure: a neural network approach based on echocardiographic data.
J Am Coll Cardiol. 1995 Dec;26(7):1586-93. doi: 10.1016/0735-1097(95)00385-1.
7
Four-variable risk model in men and women with heart failure.男性和女性心力衰竭患者的四变量风险模型。
Circ Heart Fail. 2014 Jan;7(1):88-95. doi: 10.1161/CIRCHEARTFAILURE.113.000404. Epub 2013 Nov 26.

本文引用的文献

2
Three-way ROCs.三元ROC曲线
Med Decis Making. 1999 Jan-Mar;19(1):78-89. doi: 10.1177/0272989X9901900110.
3
Risk stratification in chronic heart failure.慢性心力衰竭的风险分层
Eur Heart J. 1998 May;19(5):696-710. doi: 10.1053/euhj.1997.0820.
5
Predicting outcomes in severe heart failure.预测重度心力衰竭的预后
Circulation. 1997 Jun 17;95(12):2597-9. doi: 10.1161/01.cir.95.12.2597.
9
The risk of determining risk with multivariable models.使用多变量模型确定风险的风险。
Ann Intern Med. 1993 Feb 1;118(3):201-10. doi: 10.7326/0003-4819-118-3-199302010-00009.
10
Report of the Task Force on Research in Heart Failure.心力衰竭研究特别工作组报告
Circulation. 1994 Sep;90(3):1118-23. doi: 10.1161/01.cir.90.3.1118.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验