Suppr超能文献

利用语义距离对医学概念进行高效编码。

Using semantic distance for the efficient coding of medical concepts.

作者信息

Bousquet C, Jaulent M C, Chatellier G, Degoulet P

机构信息

Medical Informatics Department, Broussais Hospital, Paris, France.

出版信息

Proc AMIA Symp. 2000:96-100.

Abstract

OBJECTIVE

To use the notion of semantic distance to find the nearest neighbors of a medical concept in a controlled vocabulary.

MATERIAL AND METHOD

392 concepts from the cardiovascular chapter of the ICD-10 were projected on the axes of SNOMED III. Distances were measured on each axis and the resulting distance was found using a Lp norm.

RESULTS

The distance between a set of ischemic diseases and a set of non-ischemic diseases was significant (p < 0.0001). Our method was validated by finding the k nearest neighbors of ten different diagnoses from the ICD-10 cardiovascular chapter.

DISCUSSION

The availability of SNOMED-RT should improve our method. Several more steps are necessary to provide an ideal coding tool.

摘要

目的

运用语义距离的概念在受控词汇表中找到医学概念的最近邻。

材料与方法

将国际疾病分类第十版(ICD - 10)心血管章节中的392个概念投影到医学系统命名法第三版(SNOMED III)的轴上。在每个轴上测量距离,并使用Lp范数得出最终距离。

结果

一组缺血性疾病和一组非缺血性疾病之间的距离具有显著性(p < 0.0001)。通过找到ICD - 10心血管章节中十种不同诊断的k最近邻,我们的方法得到了验证。

讨论

SNOMED - RT的可用性应能改进我们的方法。要提供一个理想的编码工具还需要更多步骤。

引用本文的文献

1
3
Towards a framework for developing semantic relatedness reference standards.
J Biomed Inform. 2011 Apr;44(2):251-65. doi: 10.1016/j.jbi.2010.10.004. Epub 2010 Oct 31.
5
Appraisal of the MedDRA conceptual structure for describing and grouping adverse drug reactions.
Drug Saf. 2005;28(1):19-34. doi: 10.2165/00002018-200528010-00002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验