Suppr超能文献

使用小波包检测和分类神经尖峰。

Detection and sorting of neural spikes using wavelet packets.

作者信息

Hulata E, Segev R, Shapira Y, Benveniste M, Ben-Jacob E

机构信息

School of Physics and Astronomy, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel.

出版信息

Phys Rev Lett. 2000 Nov 20;85(21):4637-40. doi: 10.1103/PhysRevLett.85.4637.

Abstract

We propose a novel method for the detection and sorting of recorded neural spikes using wavelet packets. We employ the best basis via the Shannon's information cost function and local discriminant basis using mutual information. We demonstrate the efficiency of the method on data recorded in vitro from 2D neural networks. We show that our method is superior both in separation from noise and in identifying superimposed spikes.

摘要

我们提出了一种使用小波包对记录的神经尖峰进行检测和分类的新方法。我们通过香农信息成本函数采用最佳基,并利用互信息采用局部判别基。我们在从二维神经网络体外记录的数据上证明了该方法的有效性。我们表明,我们的方法在与噪声分离以及识别叠加尖峰方面都更具优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验